Skip to main content

Particle Optics of Electrons

  • Chapter
Transmission Electron Microscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 36))

  • 718 Accesses

Abstract

The acceleration of electrons in the electrostatic field between cathode and anode, the action of magnetic fields with axial symmetry as electron lenses and the application of transverse magnetic and electrostatic fields for electron-beam deflection and electron spectrometry can be analysed by applying the laws of relativistic mechanics and hence calculating electron trajectories. Lens aberrations can likewise be introduced and evaluated by this kind of particle optics. In the case of spherical aberration, however, it will also be necessary to express this error in terms of a phase shift, known as the wave aberration, by using the wave-optical model introduced in the next section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Raith: “Untersuchungen zur Spin-Polarisation von Elektronenstrahlen,” in Electron Microscopy 1962, 5th Intern. Congr. Electron Microscopy, Vol.1, ed. by S.S. Breese (Academic, New York 1962) p.AA–6.

    Google Scholar 

  2. K. Tradowsky: “Messungen an polarisierten Elektronenstrahlen mit Elektron-Elektron-(Möller)-Streuung,” in Electron Microscopy 1962, 5th Intern. Congr. Electron Microscopy, Vol.1, ed. by S.S. Breese (Academic, New York 1962) p.AA–5.

    Google Scholar 

  3. J. Kessler: Polarized Electrons (Springer, Berlin, Heidelberg, New York 1976).

    Book  Google Scholar 

  4. W. Glaser: Grundlagen der Elektronenoptik (Springer, Wien 1952).

    MATH  Google Scholar 

  5. A. Septier: Focusing of Charged Particles (Academic, New York 1967).

    Google Scholar 

  6. P. Grivet: Electron Optics, Part 1: Optics, Part 2: Instruments, 2nd ed., (translated by P.W. Hawkes) (Pergamon, Oxford 1972).

    Google Scholar 

  7. P.W. Hawkes (ed.): Properties of Magnetic Electron Lenses, Topics Appl. Phys., Vol.18 (Springer, Berlin, Heidelberg, New York 1982).

    Google Scholar 

  8. W. Glaser: Strenge Berechnung magnetischer Linsen der Feldform H= H0/[1 + (z/a)2]. Z. Phys. 117, 285 (1941).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. J. Dosse: Strenge Berechnung magnetischer Linsen mit unsymmetrischer Feldform nach H=H0/[1 + (z/a)2]. Z. Phys. 117, 316 (1941).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. W.D. Riecke: “Ein Kondensorsystem für eine starke Objektivlinse,” in Electron Microscopy 1962, 5th Intern. Congr. Electron Microscopy, Vol.1, ed. by S.S. Breese (Academic, New York 1962) p.KK–5.

    Google Scholar 

  11. E. Ruska: Über die Auflösungsgrenzen des Durchstrahlungs-Elektronenmikroskops. Optik 22, 319 (1965).

    Google Scholar 

  12. S. Suzuki, K. Akashi, H. Tochigi: “Objective Lens Properties of Very High Excitation,” in 26th Annual Meeting of EMSA (Claitor’s Publ. Div., Baton Rouge, LO 1968) p.320.

    Google Scholar 

  13. W.D. Riecke: “Objective Lens Design for TEM. A Review of the Present State of the Art,” in Electron Microscopy 1972 (The Institute of Physics, London 1972) p.98.

    Google Scholar 

  14. W. Kamminga: Properties of magnetic objective lenses with highly saturated pole pieces. Optik 45, 39 and 46, 226 (1976).

    Google Scholar 

  15. A. Septier: “Superconducting Lenses,” in Electron Microscopy 1972 (The Institute of Physics, London 1972) p.104.

    Google Scholar 

  16. P. Bonjour: “Superconducting Lenses: Present Trends and Design,” in Electron Microscopy 1976, Vol.1, ed. by D.G. Brandon (Tal International, Jerusalem 1976) p.73.

    Google Scholar 

  17. I. Dietrich: “Superconducting Lenses,” in Electron Microscopy 1978, Vol.3, ed. by J.M. Sturgess (Microscopical Soc. Canada, Toronto 1978) p.173.

    Google Scholar 

  18. W.D. Riecke: “Practical Lens Design”, in [Ref.2.7, p.164].

    Google Scholar 

  19. T. Mulvey, C.D. Newman: “Versatile Miniature Electron Lenses,” in Electron Microscopy 1972 (The Institute of Physics, London 1972) p.116.

    Google Scholar 

  20. T. Mulvey, M.J. Wallington: Electron lenses. Rep. Prog. Phys. 36, 347 (1973).

    Article  ADS  Google Scholar 

  21. T. Mulvey: “Imaging System for Conventional Electron Microscopes,” in Electron Microscopy 1974, Vol.1, ed. by J.V. Sanders, D.J. Goodchild (Australian Acad. Sci., Canberra 1974) p.16.

    Google Scholar 

  22. T. Mulvey: “Unconventional Lens Design,” in [Ref.2.7, p.359].

    Google Scholar 

  23. V.E. Cosslett: Probe size and probe current in the scanning transmission electron microscope. Optik 36, 85 (1972).

    Google Scholar 

  24. W. Kunath, W.D. Riecke: Zur Bestimmung der Öffnungsfehlerkoeffizienten magnetischer Objektivlinsen. Optik 23, 322 (1966).

    Google Scholar 

  25. L. Albert: Zur Phasenschiebung starker Elektronenlinsen bei endlicher Vergrößerung. Optik 24, 18 (1966).

    Google Scholar 

  26. W. Kunath, W.D. Riecke, E. Ruska: “Spherical Aberration of Saturated Strong Objective Lenses,” in Electron Microscopy 1966, Vol.1, ed. by R. Uyeda (Maruzen, Tokyo 1966) p.139.

    Google Scholar 

  27. T. Yanaka, M. Watanabe: “Aberration Coefficients of Extremely Asymmetrical Objective Lenses,” in Electron Microscopy 1966, Vol.1, ed. by R. Uyeda (Maruzen, Tokyo 1966) p.141.

    Google Scholar 

  28. C.E. Hall: Method of measuring spherical aberration of an electron microscope objective. J. Appl. Phys. 20, 631 (1949).

    Article  ADS  Google Scholar 

  29. K. Heinemann: In-situ measurement of objective lens data of a high resolution electron microscope. Optik 34, 113 (1971).

    Google Scholar 

  30. G. Liebmann: Measured properties of strong “unipotential” electron lenses. Proc. Phys. Soc. B 62, 213 (1949).

    Article  ADS  Google Scholar 

  31. K.J. Hanszen: Vergleichende Betrachtungen liber den Öffnungsfehler symmetrischer und asymmetrischer Elektronen-Einzel linsen auf Grund von Vermessungen der Austrittsstrahltangenten. Z. Naturforsch. A13, 409 (1958).

    ADS  Google Scholar 

  32. S. Leisegang: Zum Astigmatismus von Elektronenlinsen. Optik 10, 5 (1953).

    Google Scholar 

  33. W. Glaser, H. Grümm: Die Kaustikfläche von Elektronenlinsen. Optik 7, 96(1950).

    MathSciNet  Google Scholar 

  34. D. Kynaston, T. Mulvey: The correction of distortion in the electron microscope. Br. J. Appl. Phys. 14, 199 (1963).

    Article  ADS  Google Scholar 

  35. J. Dosse: Über optische Kenngrößen starker Elektronenlinsen. Z. Phys. 117, 722 (1941).

    Article  MathSciNet  ADS  Google Scholar 

  36. V.E. Cosslett: Energy loss and chromatic aberration in electron microscopy. Z. Angew. Phys. 27, 138 (1969).

    Google Scholar 

  37. L. Reimer, P. Gentsch: Superposition of chromatic error and beam broadening in TEM of thick carbon and organic specimens. Ultramicroscopy 1, 1 (1975).

    Article  Google Scholar 

  38. M. Fotino: “Evaluation of Factors Affecting the Resolution in Thick Biological Specimens in High-Voltage TEM,” in Electron Microscopy 1976, Vol.1, ed. by D.G. Brandon (Tal International, Jerusalem 1976) p.277.

    Google Scholar 

  39. S. Katagiri: Experimental investigation of chromatic aberration in the electron microscope. Rev. Sci. Instrum. 26, 870 (1955).

    Article  ADS  Google Scholar 

  40. O. Scherzer: Sphärische und chromatische Korrektur von Elektronen-Linsen. Optik 2, 114 (1947).

    Google Scholar 

  41. A. Septier: Lentille quadrupolaire magnéto-électrique corrigée de l’aberration chromatique. Aberration d’ouverture de ce type de lentilles. C.R. Acad. Sci. Paris 256, 2325 (1963).

    MATH  Google Scholar 

  42. H. Rose: Über den sphärischen und den chromatischen Fehler unrunder Elektronenlinsen. Optik 25, 587 (1967).

    Google Scholar 

  43. H. Rose: Elektronenoptische Aplanate. Optik 34, 285 (1971).

    Google Scholar 

  44. H. Koops, G. Kuck, O. Scherzer: Erprobung eines elektronenoptischen Achromators. Optik 48, 225 (1977).

    Google Scholar 

  45. H. Koops: “Aberration Correction in Electron Microscopy,” in Electron Microscopy 1978, Vol.3, ed. by J.M. Sturgess (Microscopical Soc. Canada, Toronto 1978) p.185.

    Google Scholar 

  46. O. Rang: Der elektrostatische Stigmator, ein Korrektiv für astigmatische Elektronenlinsen. Optik 5, 518 (1949).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reimer, L. (1984). Particle Optics of Electrons. In: Transmission Electron Microscopy. Springer Series in Optical Sciences, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13553-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13553-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13555-6

  • Online ISBN: 978-3-662-13553-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics