Skip to main content

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 1999))

  • 216 Accesses

Abstract

Primary intracellular targets for the biological actions of nitric oxide (NO) are iron and heme-containing proteins [1]. Quantitatively, the major reaction of NO in vivo is with oxyhemoglobin [2]. Therefore, while NO and red blood cells (RBCs) share a close relationship, little is known about specific interactions, such as the impact of NO on oxygen delivery (DO2), on the modulation of RBC membrane properties, on the endothelium’s permeability and on the regulation of blood flow and pressure. In this chapter, we will introduce the reader to three specific areas of NO- and RBC-interactions namely:

  1. 1)

    how NO changes membrane properties of the RBC

  2. 2)

    the dependence of NO modulation of pulmonary vascular resistance (PVR) on the RBC

  3. 3)

    the intracellular machinery that permits the RBC to produce its own NO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Henry Y, Lepoivre M, Drapier JC, Ducrocq C, Boucher JL, Guissani A (1993) EPR characterization of molecular targets for NO in mammalian cells and organelles. FASEB J 7:1124–1134.

    PubMed  CAS  Google Scholar 

  2. Wennmalm A, Benthin G, Edlund A, et al (1993) Metabolism and excretion of nitric oxide in humans. An experimental and clinical study. Circ Res 73:1121–1127.

    Article  PubMed  CAS  Google Scholar 

  3. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol 271:C1424–C1437.

    PubMed  CAS  Google Scholar 

  4. Sessa WC (1994) The nitric oxide synthase family of proteins. J Vasc Res 31:131–143.

    Article  PubMed  CAS  Google Scholar 

  5. Förstermann U (1994) Biochemistry and molecular biology of nitric oxide synthases. Arzneimittelforschung 44:402–407.

    PubMed  Google Scholar 

  6. Cho HJ, Xie QW, Calaycay J, et al (1992) Calmodulin is a subunit of nitric oxide synthase from macrophages. J Exp Med 176:599–604.

    Article  PubMed  CAS  Google Scholar 

  7. Evans T, Carpenter A, Cohen J (1992) Purification of a distinctive form of endotoxin-induced nitric oxide synthase from rat liver. Proc Natl Acad Sci USA 89:5361–5365.

    Article  PubMed  CAS  Google Scholar 

  8. Buttery LD, Evans T, Springall DR, Carpenter A, Cohen J, Polak JM (1994) Immunochemical localization of inducible nitric oxide synthase in endotoxin-treated rats. Lab Invest 71:755–764.

    PubMed  CAS  Google Scholar 

  9. Nussler AK, Billiar TR (1993) Inflammation, immunoregulation, and inducible nitric oxide synthase. J Leukocyte Biol 54:171–178.

    PubMed  CAS  Google Scholar 

  10. Förstermann U, Closs EI, Pollock JS, et al (1994) Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 23:1121–1131.

    Article  PubMed  Google Scholar 

  11. Tsujita K, Shiraishi T, Kakinuma K (1997) Microspectrophotometry of nitric oxide-dependent changes in hemoglobin in single red blood cells incubated with stimulated macrophages. J Biochem 122:264–270.

    Article  PubMed  CAS  Google Scholar 

  12. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84:9265–9269.

    Article  PubMed  CAS  Google Scholar 

  13. Moore EG, Gibson QH (1976) Cooperativity in the dissociation of nitric oxide from hemoglobin. J Biol Chem 251:2788–2794.

    PubMed  CAS  Google Scholar 

  14. Cassoly R, Gibson Q (1975) Conformation, co-operativity and ligand binding in human hemoglobin. J Mol Biol 91:301–313.

    Article  PubMed  CAS  Google Scholar 

  15. Kon K, Maeda N, Shiga T (1977) Effect of nitric oxide on the oxygen transport of human erythrocytes. J Toxicol Environ Health 2:1109–1113.

    Article  PubMed  CAS  Google Scholar 

  16. Kosaka K, Seiyama A (1997) Increased oxygen dissociation by nitric oxide from RBC. Adv Exp Biol 428:349–354.

    Article  CAS  Google Scholar 

  17. Jia L, Bonaventura C, Bonaventura J, Stamler JS (1996) S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 380:221–226.

    Article  PubMed  CAS  Google Scholar 

  18. Stamler JS, Jia L, Eu JP, et al (1997) Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science 276:2034–2037.

    Article  PubMed  CAS  Google Scholar 

  19. Davidson LW, Mollitt DL (1990) The effect of endotoxin on red blood cell deformability and whole blood viscosity. Curr Surg 47:341–342.

    PubMed  CAS  Google Scholar 

  20. Hurd TC, Dasmahapatra KS, Rush-BF J, Machiedo GW (1988) Red blood cell deformability in human and experimental sepsis. Arch Surg 123:217–220.

    Article  PubMed  CAS  Google Scholar 

  21. Machiedo GW, Powell RJ, Rush-BF J, Swislocki NI, Dikdan G (1989) The incidence of decreased red blood cell deformability in sepsis and the association with oxygen free radical damage and multiple-system organ failure. Arch Surg 124:1386–1389.

    Article  PubMed  CAS  Google Scholar 

  22. Langenfeld JE, Livingston DH, Machiedo GW (1991) Red cell deformability is an early indicator of infection. Surgery 110:398–403.

    PubMed  CAS  Google Scholar 

  23. Todd JC, Poulos ND, Davidson LW, Mollitt DL (1993) Role of the leukocyte in endotoxin-induced alterations of the red cell membrane. Am Surg 59:9–12.

    PubMed  Google Scholar 

  24. Powell RJ, Machiedo GW, Rush-BF J (1993) Decreased red blood cell deformability and impaired oxygen utilization during human sepsis. Am Surg 59:65–68.

    PubMed  CAS  Google Scholar 

  25. Powell RJ, Machiedo GW, Rush-BF J, Dikdan G (1989) Effect of alpha-tocopherol on red cell deformability and survival in sepsis. Curr Surg 46:380–382.

    PubMed  CAS  Google Scholar 

  26. Todd JC, Mollitt DL (1992) Effect of sepsis on erythrocyte intracellular calcium homeostasis. Crit Care Med 20:S48 (Abst).

    Article  Google Scholar 

  27. Ismail NH, Cohn EJ, Mollitt DL (1997) Nitric oxide synthase inhibition negates septic induced alterations in cytoplasmic calcium homeostasis and membrane dynamics. Am Surg 63:20–23.

    PubMed  CAS  Google Scholar 

  28. Korbut R, Gryglewski RJ (1993) Nitric oxide from polymorphonuclear leukocytes modulates red blood cell deformability in vitro. Eur J Pharmacol 234:17–22.

    Article  PubMed  CAS  Google Scholar 

  29. Korbut R, Gryglewski RJ (1996) The effect of prostacyclin and nitric oxide on deformability of red blood cells in septic shock in rats. J Physiol Pharmacol 47:591–599.

    PubMed  CAS  Google Scholar 

  30. Starzyk D, Korbut R, Gryglewski RJ (1997) The role of nitric oxide in regulation of deformability of red blood cells in acute phase of endotoxaemia in rats. J Physiol Pharmacol 48:731–735.

    PubMed  CAS  Google Scholar 

  31. Caramelo C, Riesco A, Outeirino J, et al (1994) Effects of nitric oxide on red blood cells: Changes in erythrocyte resistance to hypotonic hemolysis and potassium efflux by experimental maneuvers that decrease nitric oxide. Biochem Biophys Res Commun 199:447–454.

    Article  PubMed  CAS  Google Scholar 

  32. Sprague RS, Stephenson AH, Dimmitt RA, et al (1995) Effect of L-NAME on pressure-flow relationships in isolated rabbit lungs: role of red blood cells. Am J Physiol 269:H1941–H1948.

    PubMed  CAS  Google Scholar 

  33. Uncles DR, Daugherty MO, Frank DU, Roos CM, Rich GF (1996) Nitric oxide modulation of pulmonary vascular resistance is red blood cell dependent in isolated rat lungs. Anesth Analg 83:1212–1217.

    PubMed  CAS  Google Scholar 

  34. Deem S, Swenson ER, Alberts MK, Hedges RG, Bishop MJ (1998) Red blood cell augmentation of hypoxic pulmonary vasoconstriction: Hematocrit dependence and the importance of nitric oxide. Am J Resp Crit Care Med 157:1181–1186.

    PubMed  CAS  Google Scholar 

  35. Rimar S, Gillis CN (1993) Selective pulmonary vasodilation by inhaled nitric oxide is due to hemoglobin inactivation. Circulation 88:2884–2887.

    Article  PubMed  CAS  Google Scholar 

  36. Ellsworth ML, Forrester T, Ellis CG, Dietrich HH (1995) The erythrocyte as a regulator of vascular tone. Am J Physiol 269:H2155–H2161.

    PubMed  CAS  Google Scholar 

  37. Sprague RS, Ellsworth ML, Stephenson AH, Lonigro AJ (1996) ATP: the red blood cell link to NO and local control of the pulmonary circulation. Am J Physiol 271:H2717–H2722.

    PubMed  CAS  Google Scholar 

  38. Bogle RG, Coade SB, Moncada S, Pearson JD, Mann GE (1991) Bradykinin and ATP stimulate L-arginine uptake and nitric oxide release in vascular endothelial cells. Biochem Biophys Res Commun 180:926–932.

    Article  PubMed  CAS  Google Scholar 

  39. Deliconstantinos G, Villiotou V, Stavrides JC, Salemes N, Gogas J (1995) Nitric oxide and peroxynitrite production by human erythrocytes: A causative factor of toxic anemia in breast cancer patients. Anticancer Res 15:1435–1446.

    PubMed  CAS  Google Scholar 

  40. Ghigo D, Todde R, Ginsburg H, et al (1995) Erythrocyte stages of Plasmodium falciparum exhibit a high nitric oxide synthase (NOS) activity and release an NOS-inducing soluble factor. J Exp Med 182:677–688.

    Article  PubMed  CAS  Google Scholar 

  41. Jubelin BC, Gierman JL (1996) Erythrocytes may synthesize their own nitric oxide. Am J Hypertens 9:1214–1219.

    Article  PubMed  CAS  Google Scholar 

  42. Chen LY, Mehta JL (1998) Evidence for the presence of L-arginine-nitric oxide pathway in human red blood cells: Relevance in the effects of red blood cells on platelet function. J Cardiovasc Pharmacol 32:57–61.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Graf, J., Eichelbroenner, O., Sibbald, W.J. (1999). The Red Blood Cell and Nitric Oxide. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 1999. Yearbook of Intensive Care and Emergency Medicine, vol 1999. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13453-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13453-5_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65288-5

  • Online ISBN: 978-3-662-13453-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics