Skip to main content

Phytopathogenic Members of the Genus Pseudomonas

  • Chapter
The Prokaryotes

Abstract

The phytopathogenic pseudomonads cause an array of diseases in plants ranging from necrotic lesions and spots of fruit, stems, and leaves, to hyperplasias (galls, scabs), tissue macerations (rots), cankers, blights, and vascular infections (wilts). Pseudomonas-incited plant diseases are worldwide in distribution and involve representatives of most major groups of higher plants. Some of the world’s most serious infectious plant diseases are caused by members of this genus, such as Pseudomonas sol-anacearum. Other bacteria in this group, such as Pseudomonas aeruginosa, are low-grade phyto-pathogens, which seldom attack plants and only when the plants are under stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Baigent, N. L., DeVay, J. E., Starr, M. P. 1963. Bacteriophages of Pseudomonas syringae. New Zealand Journal of Science 6:75–100.

    Google Scholar 

  • Ballard, R. W., Palleroni, N. J., Doudoroff, M., Stanier, R. Y., Mandel, M. 1970. Taxonomy of the aerobic pseudomonads: Pseudomonas cepacia, P. marginata, P. alliicola and P. caryophylli. Journal of General Microbiology 60:199–214.

    PubMed  CAS  Google Scholar 

  • Baptist, J. N., Shaw, C. R., Mandel, M. 1971. Comparative zone electrophoresis of enzymes of Pseudomonas solan-acearum and Pseudomonas cepacia. Journal of Bacteriology 108:799–803.

    PubMed  CAS  Google Scholar 

  • Barachini, O., Sherris, J. C. 1959. The chemotactic effect of oxygen bacteria. Journal of Pathological Bacteriology 77:565–574.

    Google Scholar 

  • Basse«, D. C. J., Stokes, K. J., Thomas, W. R. G. 1970. Wound infection with Pseudomonas multivorans: A water-borne contaminant of disinfectant solutions. Lancet i: 1188–1191.

    Google Scholar 

  • Billing, E. 1963. The value of phage sensitivity tests for the identification of phytopathogenic Pseudomonas spp. Journal of Applied Bacteriology 26:193–210.

    Google Scholar 

  • Billing, E. 1970. Further studies on the phage sensitivity and the determination of phytopathogenic Pseudomonas spp. Journal of Applied Bacteriology 33:478–491.

    PubMed  CAS  Google Scholar 

  • Bonn, W. G., Sequeira, L., Upper, C. D. 1975. Technique for the determination of the rate of ethylene production by Pseudomonas solanacearum. Plant Physiology 56:688–691.

    PubMed  CAS  Google Scholar 

  • Bottone, E. J., Douglas, S. D., Rausen, A. R., Keusch, G. T. 1975. Association of Pseudomonas cepacia with chronic granulomatous disease. Journal of Clinical Microbiology 1:425–428.

    PubMed  CAS  Google Scholar 

  • Breed, R. S., Murray, E. G. D., Smith, N. R. (eds.). 1957. Bergey’s manual of determinative bacteriology, 7th ed. Baltimore: Williams & Wilkins.

    Google Scholar 

  • Bryan, M. K. 1928. Lilac blight in the United States. Journal of Agricultural Research 36:225–235.

    Google Scholar 

  • Buddenhagen, I. 1965. The relation of plant-pathogenic bacteria to the soil, pp. 269–284. In: Baker, K. F., Snyder, W. C. (eds.), Ecology of soil-borne plant pathogens, prelude to biological control. Berkeley: University of California Press.

    Google Scholar 

  • Buddenhagen, I., Kelman, A. 1964. Biological and physiological aspects of bacterial wilt caused by Pseudomonas solanacearum. Annual Review of Phytopathology 2:203–230.

    Google Scholar 

  • Burkholder, W. H. 1959. Present-day problems pertaining to the nomenclature and taxonomy of the phytopathogenic bacteria, pp. 119–127. In: Bontea, V. et al. (eds.), Omagiu lui Traian Savulescu. Bucharest: Editura Academiei Republicii Populare Romine.

    Google Scholar 

  • Burki, T. 1973. Pseudomonas viridiflava (Burkholder) Dowson and other fluorescent plant pathogenic pseudomonads associated with lesions on tomato leaves, pp. 26–34. In: JournĂ©es d’études sur les bactĂ©ries du groupe “Pseudomonas syringae”. Angers, France: Station de Pathologie VĂ©gĂ©tale et PhytobactĂ©riologie.

    Google Scholar 

  • Carson, L. A., Petersen, N. J. 1975. Photoreactivation of Pseudomonas cepacia after ultraviolet exposure: A potential source of contamination in ultraviolet-treated waters. Journal of Clinical Microbiology 1:462–464.

    PubMed  CAS  Google Scholar 

  • Chet, L, Zilberstein, Y., Henis, Y 1973. Chemotaxis of Pseudomonas lachrymans to plant extracts and to water droplets collected from the leaf surfaces of resistant and susceptible plants. Physiological Plant Pathology 3:473–479.

    CAS  Google Scholar 

  • Cho, J. J., Schroth, M. N., Kominos, S. D., Green, S. K. 1975. Ornamental plants as carriers of Pseudomonas aeruginosa. Phytopathology 65:425–431.

    Google Scholar 

  • Clara, F. M. 1934. A comparative study of the green-fluorescent bacterial plant pathogens. Cornell University Agricultural Experiment Station Memoir 159:1–36.

    Google Scholar 

  • ColĂ©no, A., Hingand, L., Barzic, M.-R. 1970. Contribution Ă  l’étude sĂ©rologique de Pseudomonas phaseolicola (Burk) Dowson. Annales de Phytopathologie 2:199–207.

    Google Scholar 

  • ColĂ©no, A., Le Normand, M., Barzic, M.-R. 1972. A qualitative study on the antigens involved in the complement-fixation • reaction among some phytopathogenic pseudomonads, pp. 143–150. In: Maas Geesteranus, H. P. (ed.), Proceedings of the Third International Conference on Plant Pathogenic Bacteria. Wageningen: Centre for Agricultural Publishing and Documentation.

    Google Scholar 

  • Cother, E. J., Darbyshire, B., Brewer, J. 1976. Pseudomonas aeruginosa: Cause of internal brown rot of onion. Phytopathology 66:828–834.

    Google Scholar 

  • Cowan, S. T. 1962. The microbial species—a macromyth? pp. 433–455. In: Ainsworth, G. C., Sneath, P. H. A. (eds.), Microbial classification. Cambridge: Cambridge University Press.

    Google Scholar 

  • Crosse, J. E. 1968. Plant pathogenic bacteria in soil, pp. 552–572. In: Gray, T. R. G., Parkinson, D. (eds.), The ecology of soil bacteria. Liverpool: University Press.

    Google Scholar 

  • Crosse, J. E., Garrett, C. M. E. 1963. Studies on the bacteri-ophagy of Pseudomonas mors-prunorum, Ps. syringae and related organisms. Journal of Applied Bacteriology 26:159–177.

    Google Scholar 

  • Csiszár, K., Lányi, B. 1970. Pyocine typing of Pseudomonas aeruginosa: Association between antigenic structure and pyocine type. Acta Microbiologica Academiae Scientiarum Hungaricae 17:361–370.

    PubMed  Google Scholar 

  • Cuppels, D., Kelman, A. 1974. Evaluation of selective media for isolation of soft-rot bacteria from soil and plant tissue. Phytopathology 64:468–475.

    CAS  Google Scholar 

  • de Lange, A., Leben, C. 1971. The cucumber bud as a possible factor in the pathogenesis of Pseudomonas lachrymans, pp. 391–393. In: Preece, T. F., Dickinson, C. H. (eds.), Ecology of leaf surface micro-organisms. London, New York: Academic Press.

    Google Scholar 

  • De Ley, J. 1968. DNA base composition and hybridization in the taxonomy of phytopathogenic bacteria. Annual Review of Phytopathology 6:63–90.

    Google Scholar 

  • Doudoroff, M., Palleroni, N. J. 1974. Pseudomonas, pp. 217–243. In: Buchanan, R. E., Gibbons, N. E. (eds.), Bergey’s manual of determinative bacteriology, 8th ed. Baltimore: Williams & Wilkins.

    Google Scholar 

  • DuBow, M. S., Ryan, T. 1977. Host factor for coliphage Qβ RNA replication as an aid in elucidating phylogenetic relationships: The genus Pseudomonas. Journal of General Microbiology 102:263–268.

    Google Scholar 

  • Durbin, R. D. 1971. Chlorosis-inducing pseudomonad toxins: Their mechanism of action and structure, pp. 369–385. In: Akai, S., Ouchi, S. (eds.), Morphological and biochemical events in plant-parasite interaction. Tokyo: The Phytopatho-logical Society of Japan.

    Google Scholar 

  • Dye, D.W., Bradbury, J. F., Goto, M., Hayward, A. C., Lelliott, R. A., Schroth, M. N. 1980. International standards for naming pathovars of phytopathogenic bacteria and a list of pathovar names and pathotype strains. Review of Plant Pathology 59:153–168.

    Google Scholar 

  • Ederer, G. M., Matsen, J. M. 1972. Colonization and infection with Pseudomonas cepacia. Journal of Infectious Disease 125:613–618.

    CAS  Google Scholar 

  • Ercolani, G. L. 1971. Occurrence of Pseudomonas savastanoi (E. F. Smith) Stevens as an epiphyte of olive trees in Apulia. Phytopathologica Mediterranea 10:130–132.

    Google Scholar 

  • Ercolani, G. L., Crosse, J. E. 1966. The growth of Pseudomonas phaseolicola and related plant pathogens in vivo. Journal of General Microbiology 45:429–439.

    Google Scholar 

  • Ercolani, G. L., Hagedorn, D. J., Kelman, A., Rand, R. E. 1974. Epiphytic survival of Pseudomonas syringae on hairy vetch in relation to epidemiology of bacterial brown spot of bean in Wisconsin. Phytopathology 64:1330–1339.

    Google Scholar 

  • Freebairn, H. T., Buddenhagen, I. W. 1964. Ethylene production by Pseudomonas solanacearum. Nature 202:313–314.

    PubMed  CAS  Google Scholar 

  • Gardan, L., Luisetti, J., Prunier, J.-P. 1972. Variation in inoculum level of Pseudomonas mors-prunorum persicae on the leaf surface of peach trees, pp. 87–94. In: Maas Geesteranus, H. P. (ed.), Proceedings of the Third International Conference on Plant Pathogenic Bacteria. Wageningen: Centre for Agricultural Publishing and Documentation.

    Google Scholar 

  • Garibaldi, J. A. 1967. Media for the enhancement of fluorescent pigment production by Pseudomonas species. Journal of Bacteriology 94:1296–1299.

    PubMed  CAS  Google Scholar 

  • Garrett, C. M. E., Panagopoulos, C. G., Crosse, J. E. 1966. Comparison of plant pathogenic pseudomonads from fruit trees. Journal of Applied Bacteriology 29:342–356.

    Google Scholar 

  • Gehring, F. 1962. Untersuchungen ĂĽber den Infektionsverlauf einer durch Pectobacterium parthenii (Starr) Hellmers var. dianthicola Hellmers verursachten Nelkenbakteriose sowie ĂĽber enzymatische Eigenschaften dieses Bakteriums im Vergleich mit Pseudomonas caryophylli (Burkholder) Starr et Burkholder und einigen typischen Nassfäuleerregern. Phyto-pathologische Zeitschrift 43:383–407.

    Google Scholar 

  • Green, S. K., Schroth, M. N., Cho, J. J., Kominos, S. D., Vitanza-Jack, V. B. 1974. Agricultural plants and soil as a possible reservoir for Pseudomonas aeruginosa. Applied Microbiology 28:987–991.

    PubMed  CAS  Google Scholar 

  • Gross, D. C., DeVay, J. E. 1977a. RĂ´le of syringomycin in holcus spot of maize and systemic necrosis of cowpea caused by Pseudomonas syringae. Physiological Plant Pathology 11:1–11.

    CAS  Google Scholar 

  • Gross, D. C., DeVay, J. E. 1977b. Production and purification of syringomycin, a phytotoxin produced by Pseudomonas syringae. Physiological Plant Pathology 11:13–28.

    CAS  Google Scholar 

  • Guthrie, J. W. 1968. The serological relationship of races of Pseudomonas phaseolicola. Phytopathology 58:716–717.

    Google Scholar 

  • Haas, J. H., Rotem, J. 1976. Pseudomonas lachrymans adsorption, survival, and infectivity following precision inoculation of leaves. Phytopathology 66:992–997.

    Google Scholar 

  • Hagar, S. S., Mclntyre, G. A. 1972. Pectic enzymes produced by Pseudomonas fluorescens, an organism associated with “pink eye” disease of potato tubers. Canadian Journal of Botany 50:2479–2488.

    CAS  Google Scholar 

  • Harris, D. C. 1972. Intra-specific variation in Pseudomonas solanacearum, pp. 289–292. In: Maas Geesteranus, H. P. (ed.), Proceedings of the Third International Conference on Plant Pathogenic Bacteria. Wageningen: Centre for Agricultural Publishing and Documentation.

    Google Scholar 

  • Hayward, A. C. 1964. Characteristics of Pseudomonas solanacearum. Journal of Applied Bacteriology 27:265–277.

    Google Scholar 

  • Hayward, A. C. 1977. Occurrence of glycoside hydrolases in plant pathogenic and related bacteria. Journal of Applied Bacteriology 43:407–411.

    CAS  Google Scholar 

  • Hildebrand, D. C. 1971. Pectate and pectin gels for differentiation of Pseudomonas sp. and other bacterial plant pathogens. Phytopathology 61:1430–1436.

    Google Scholar 

  • Hildebrand, D. C. 1973a. Tolerance of homoserine by Pseudomonas pisi and implications of homoserine in plant resistance. Phytopathology 63:301–302.

    CAS  Google Scholar 

  • Hildebrand, D. C. 1973b. Identification of species within the syringae group of pseudomonads using nutritional screening, pp. 5–9. In: JournĂ©es d’études sur les bactĂ©ries du groupe “Pseudomonas syringae”. Angers, France: Station de Pathologie VĂ©gĂ©tale et PhytobactĂ©riologie.

    Google Scholar 

  • Hildebrand, D. C., Palleroni, N. J. 1973. A look at the taxonomy of the genus Pseudomonas with emphasis on the syringae group, pp. 1–4. In: JournĂ©es d’études sur les bactĂ©ries du groupe “Pseudomonas syringae”. Angers, France: Station de Pathologie VĂ©gĂ©tale et PhytobactĂ©riologie.

    Google Scholar 

  • Hildebrand, D. C., Palleroni, N. J., Doudoroff, M. 1973. Synonymy of Pseudomonas gladioli Severini 1913 and Pseudomonas marginata (McCulloch 1921) Stapp 1928. International Journal of Systematic Bacteriology 23:433–437.

    Google Scholar 

  • Hildebrand, D. C., Schroth, M. N. 1964. β-Glucosidase activity in phytopathogenic bacteria. Applied Microbiology 12: 487–491.

    Google Scholar 

  • Hildebrand, D. C., Schroth, M. N. 1972. Identification of fluorescent pseudomonads, pp. 281–287. In: Maas Geesteranus, H. P. (ed.), Proceedings of the Third International Conference on Plant Pathogenic Bacteria. Wageningen: Centre for Agricultural Publishing and Documentation.

    Google Scholar 

  • Hildebrand, D. C., Thompson, J. P., Schroth, M. N. 1966. Bacterial enhancement of self-limiting outgrowth formation on Datura. Phytopathology 56:365–366.

    PubMed  CAS  Google Scholar 

  • Hoitink, H. A. J., Pelletier, R. L., Coulson, J. G. 1966. Toxemia of halo blight of beans. Phytopathology 56:1062–1065.

    Google Scholar 

  • Hutzinger, O., Kosuge, T. 1967. Microbial synthesis and degradation of indole-3-acetic acid. II. The source of oxygen in the conversion of L-tryptophane to indole-3-acetamide. Biochimica et Biophysica Acta 136:389–391.

    PubMed  CAS  Google Scholar 

  • Jessen, O. 1965. Pseudomonas aeruginosa and other green fluorescent pseudomonads. A taxonomic study. Copenhagen: Munksgaard.

    Google Scholar 

  • Johnson, J. 1937. Relation of water-soaked tissues to infection by Bacterium angulatum and Bact. tabacum and other organisms. Journal of Agricultural Research 55:599–618.

    Google Scholar 

  • Kado, C. I., Heskett, M. G. 1970. Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas, and Xanthomonas. Phytopathology 60:969–976.

    PubMed  CAS  Google Scholar 

  • Karganilla, A. D., Buddenhagen, I. W. 1972. Development of a selective medium for Pseudomonas solanacearum. Phytopathology 62:1373–1376.

    Google Scholar 

  • Kawamoto, S.O., Lorbeer, J. W. 1976. Protection of onion seedlings from Fusarium oxysporum f. sp. cepae by seed and soil infestation with Pseudomonas cepacia. Plant Disease Reporter 60:189–191.

    Google Scholar 

  • Kelman, A. 1954. The relationship of pathogenicity of Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44:693–695.

    Google Scholar 

  • Kelman, A., Hruschka, J. 1973. The role of motility and aero-taxis in the selective increase of avirulent bacteria in still broth cultures of Pseudomonas solanacearum. Journal of General Microbiology 76:177–188.

    PubMed  CAS  Google Scholar 

  • Keshwal, R. L., Joshi, L. K. 1976. Variation in isolates of Pseudomonas solanacearum E. F. S. Indian Journal of Microbiology 16:94–96.

    Google Scholar 

  • King, E. O., Ward, M. K., Raney, D. E. 1954. Two simple media for the demonstration of pyocyanin and fluorescin. Journal of Laboratory and Clinical Medicine 44:301–307.

    PubMed  CAS  Google Scholar 

  • Kiprianova, E. A., Aizenman, B. E., Boiko, O. I. 1972. Some physiological differences of saprophytic fluorescent bacteria of the genus Pseudomonas from phytopathogenic ones. [In Russian.] Mikrobiologichnii Zhurnal 34:275–277.

    CAS  Google Scholar 

  • Kirâly, Z., Hevesi, M., Klement, Z. 1977. Inhibition of bacterial multiplication in incompatible host-parasite relationships in the absence of hypersensitive necrosis. Acta Phytopathologica Academiae Scientiarum Hungaricae 12:247–256.

    Google Scholar 

  • Klement, Z. 1963. Rapid detection of the pathogenicity of phytopathogenic pseudomonads. Nature 199:299–300.

    PubMed  CAS  Google Scholar 

  • Knösel, D., Nimitan, E. 1976. In vitro-Versuche ĂĽber extrazelluläre proteolytische Aktivität bei Pseudomonas aeruginosa in Zusammenhang mit phytopathologischen Untersuchungen. Zeitschrift fĂĽr Allgemeine Mikrobiologie 16:609–614.

    PubMed  Google Scholar 

  • Koch, A. 1971. The adaptive responses of Escherichia coli to a feast and famine existence. Advances in Microbial Physiology 6:147–217.

    PubMed  CAS  Google Scholar 

  • Kominos, S. D., Copeland, C. E., Grosiak, B., Postic, B. 1972. Introduction of Pseudomonas aeruginosa into a hospital via vegetables. Applied Microbiology 24:567–570.

    PubMed  CAS  Google Scholar 

  • Kosuge, T., Heskett, M. G., Wilson, E. E. 1966. Microbial synthesis and degradation of indole-3-acetic acid. I. The conversion of L-tryptophan to indole-3-acetamide by an enzyme system from Pseudomonas savastanoi. Journal of Biological Chemistry 241:3738–3744.

    PubMed  CAS  Google Scholar 

  • Kuo, T. T., Kosuge, T. 1969. Factors influencing the production and further metabolism of indole-3-acetic acid by Pseudomonas savastanoi. Journal of General and Applied Microbiology 15:51–63.

    CAS  Google Scholar 

  • Lacy, G. H., Leary, J. V. 1979. Genetic systems in phyto-pathogenic bacteria. Annual Review of Phytopathology 17:181–202.

    Google Scholar 

  • Lange, E., Knösel, D. 1970. Zur Bedeutung pektolytischer, cellulolytischer und proteolytischer Enzyme fĂĽr die Virulenz phytopathogener Bakterien. Phytopathologische Zeitschrift 69:315–329.

    CAS  Google Scholar 

  • Lányi, B. 1970. Serological properties of Pseudomonas aeruginosa. II. Type-specific thermolabile (flagellar) antigens. Acta Microbiologica Academiae Scientiarum Hungaricae 17:35–48.

    PubMed  Google Scholar 

  • Leary, J. V. 1979. Transfer and integration of chromosomal genes from Pseudomonas glycinea into Pseudomonas aeruginosa. Canadian Journal of Microbiology 25:637–640.

    PubMed  CAS  Google Scholar 

  • Leben, C. 1972. The development of a selective medium for Pseudomonas glycinea. Phytopathology 62:674–676.

    Google Scholar 

  • Leben, C. 1974. Survival of plant pathogenic bacteria. Ohio Agricultural Research and Development Center, Special Circular 100.

    Google Scholar 

  • Leben, C., Rusch, V., Schmitthenner, A. F. 1968. The colonization of soybean buds by Pseudomonas glycinea and other bacteria. Phytopathology 58:1677–1681.

    Google Scholar 

  • Leben, C., Schroth, M. N., Hildebrand, D. C. 1970. Colonization and movement of Pseudomonas syringae on healthy bean seedlings. Phytopathology 60:677–680.

    Google Scholar 

  • Lelliott, R. A. 1967. Taxonomy and determination of phyto-pathogenic Pseudomonadales. In: Proceedings of the Second International Conference on Phytopathogenic Bacteria, Oeiras, Portugal; no. 29.

    Google Scholar 

  • Lelliott, R. A., Billing, E., Hayward, A. C. 1966. A determinative scheme for the fluorescent plant pathogenic pseudomo-nads. Journal of Applied Bacteriology 29:470–489.

    PubMed  CAS  Google Scholar 

  • Lovrekovich, L., Klement, Z. 1961. Species-specific antigens of Pseudomonas tabaci. Acta Microbiologica Academiae Scientiarum Hungaricae 8:303–310.

    PubMed  CAS  Google Scholar 

  • Lovrekovich, L., Klement, Z., Dowson, W. J. 1963. Serological investigation of Pseudomonas syringae and Pseudomonas morsprunorum strains. Phytopathologische Zeitschrift 47:19–24.

    Google Scholar 

  • Lucas, L. T., Grogan, R. G. 1969a. Some properties of specific antigens of Pseudomonas lachrymans and other Pseudomonas nomenspecies. Phytopathology 59:1913–1917.

    PubMed  CAS  Google Scholar 

  • Lucas, L. T., Grogan, R. G. 1969b. Serological variation and identification of Pseudomonas lachrymans and other phytopathogenic Pseudomonas nomenspecies. Phytopathology 59:1908–1912.

    PubMed  CAS  Google Scholar 

  • Luisetti, J., Prunier, J.-P., Gardan, L. 1972. Un milieu pour la mise en Ă©vidence de la production d’un pigment fluorescent of Pseudomonas mors-prunorum f. sp.persicae. Annales de Phytopathologie 4:295–296.

    Google Scholar 

  • Maino, A. L., Schroth, M. N., Palleroni, N. J. 1974. Degradation of xylan by bacterial plant pathogens. Phytopathology 64:881–885.

    CAS  Google Scholar 

  • Misaghi, L, Grogan, R. G. 1969. Nutritional and biochemical comparisons of plant-pathogenic and saprophytic fluorescent pseudomonads. Phytopathology 59:1436–1450.

    PubMed  CAS  Google Scholar 

  • Mitchell, R. E. 1976a. Bean halo-blight toxin. Nature 260:75–76.

    CAS  Google Scholar 

  • Mitchell, R. E. 1976b. Isolation and structure of a chlorosis-inducing toxin of Pseudomonas phaseolicola. Phytochemistry 15:1941–1947.

    CAS  Google Scholar 

  • Mitchell, R. E., Bieleski, R. L. 1977. Involvement of phaseolo-toxin in halo blight of beans. Plant Physiology 60:723–729.

    PubMed  CAS  Google Scholar 

  • Moffett, M. L. 1966. A new bacterial leaf spot of Antirrhinum seedlings caused by a subspecies of Pseudomonas fluorescens Migula, 1895. Queensland Journal of Agriculture and Animal Sciences 23:121–132.

    Google Scholar 

  • Moustafa (Darweish), F A., Clark, G. A., Whittenbury, R. 1970. Two partially selective media; one for Pseudomonas mors-prunorum, Ps. syringae, Ps. phaseolicola, and Ps. tabaci, and one for agrobacteria. Phytopathologische Zeitschrift 67:342–344.

    Google Scholar 

  • Moustafa (Darweish), FA., Whittenbury, R. 1970. A comparison of some phytopathogenic and nonphytopathogenic pseudomonads. Phytopathologische Zeitschrift 67:63–72.

    Google Scholar 

  • Murata, N., Starr, M. P. 1973. A concept of the genus Xantho-monas and its species in the light of segmental homology of deoxyribonucleic acids. Phytopathologische Zeitschrift 77:285–323.

    CAS  Google Scholar 

  • Nair, N. G., Fahy, P. C. 1973. Toxin production by Pseudomonas tolaasii Paine. Australian Journal of Biological Sciences 26:509–512.

    CAS  Google Scholar 

  • Nasuno, S., Starr, M. P. 1966. Pectic enzymes of Pseudomonas marginalis. Phytopathology 56:1414–1415.

    PubMed  CAS  Google Scholar 

  • Nesmith, W. C., Jenkins, S. F., Jr. 1979. A selective medium for the isolation and quantification of Pseudomonas solana-cearum from soil. Phytopathology 69:182–185.

    Google Scholar 

  • Nishiyama, K., Ezuka, A. 1978. Species of bacteria producing coronatine, a new physiologically active substance. Annals of the Phytopathological Society of Japan 44:179–183.

    Google Scholar 

  • Nishiyama, K., Sakai, R., Ezuka, A., Ichihara, A., Shiraishi, K., Ogasawara, M., Sato, H., Sakamura, S. 1976. Phytotoxic effect of coronatine produced by Pseudomonas coronafaciens var. atropurpurea on leaves of Italian ryegrass. Annals of the Phytopathological Society of Japan 42:613–614.

    Google Scholar 

  • Ohuchi, A., Tominaga, T. 1973. Pectolytic enzymes secreted by soft rot and saprophytic pseudomonads. Annals of the Phytopathological Society of Japan 39:417–424.

    Google Scholar 

  • Ohuchi, A., Tominaga, T. 1975. Histochemical changes of cell walls during the macerating action by pectolytic enzyme, endo-PTE, of soft rot pseudomonad. Bulletin of the National Institute of Agricultural Sciences, Series C., No. 29:45–63.

    CAS  Google Scholar 

  • Okabe, N., Goto, M. 1952. Studies on Bacterium solanacearum with special reference to the kinds of strains and their classification and with special reference to the pathogenicity of strains. Shizuoka University Faculty of Agriculture Report 2:64–114.

    Google Scholar 

  • Okabe, N., Goto, M. 1961. Studies on Pseudomonas solanacearum. XI. Pathotypes in Japan. Shizuoka University Faculty of Agriculture Report 11:25–42.

    Google Scholar 

  • Okabe, N., Goto, M. 1963. Bacteriophages of plant pathogens. Annual Review of Phytopathology 1:397–418.

    Google Scholar 

  • O’Neill, R., Logan, C. 1975. A comparison of various selective isolation media for their efficiency in the diagnosis and enumeration of soft rot coliform bacteria. Journal of Applied Bacteriology 39:139–146.

    PubMed  Google Scholar 

  • Otta, J. D. 1977. Occurrence and characteristics of isolates of Pseudomonas syringae on winter wheat. Phytopathology 67:22–26.

    Google Scholar 

  • Otta, J. D., English, H. 1971. Serology and pathology of Pseudomonas syringae. Phytopathology 61:443–452.

    Google Scholar 

  • Palleroni, N. J., Ballard, R. W., Ralston, E., Doudoroff, M. 1972. Deoxyribonucleic acid homologies among some Pseudomonas species. Journal of Bacteriology 110:1–11.

    PubMed  CAS  Google Scholar 

  • Palleroni, N. J., Doudoroff, M. 1971. Phenotypic characterization and deoxyribonucleic acid homologies of Pseudomonas solanacearum. Journal of Bacteriology 107:690–696.

    PubMed  CAS  Google Scholar 

  • Palleroni, N. J., Kunisawa, R., Contopoulou, R., Doudoroff, M. 1973. Nucleic acid homologies in the genus Pseudomonas. International Journal of Systematic Bacteriology 23:333–339.

    CAS  Google Scholar 

  • Palmer, B. C., Cameron, H. R. 1971. Comparison of plantpathogenic pseudomonads by disc-gel electrophoresis. Phytopathology 61:984–986.

    Google Scholar 

  • Panopoulos, N. J., Schroth, M. N. 1974. Role of flagellar motility in the invasion of bean leaves by Pseudomonas phaseo-licola. Phytopathology 64:1389–1397.

    Google Scholar 

  • Patii, S.S. 1974. Toxins produced by phytopathogenic bacteria. Annual Review of Phytopathology 12:259–279.

    Google Scholar 

  • Patii, S. S., Youngblood, P., Christiansen, P., Moore, R. E. 1976. Phaseotoxin A: An antimetabolite from Pseudomonas phaseolicola. Biochemical and Biophysical Research Communications 69:1019–1027.

    Google Scholar 

  • Pecknold, P. C., Grogan, R. G. 1973. Deoxyribonucleic acid homology groups among phytopathogenic Pseudomonas species. International Journal of Systematic Bacteriology 23:111–121.

    Google Scholar 

  • Perlasca, G. 1960. Relationships among isolates of Pseudomonas syringae pathogenic on stone fruit trees. Phytopathology 50:889–899.

    Google Scholar 

  • Pieczarka, D. J., Lorbeer, J. W. 1975. Microorganisms associated with bottom rot of lettuce grown on organic soil in New York State. Phytopathology 65:16–21.

    Google Scholar 

  • Prasad, B., Pathak, G. L., Singh, U. V. 1974. Effect of Pseudomonas glycinea exotoxin on chemical composition of host leaves. Current Science 43:215–216.

    CAS  Google Scholar 

  • Ribeiro, R. de L. D., Durbin, R. D., Amy, D. C., Uchytil, T. F. 1977. Characterization of the bacterium inciting chocolate spot of corn. Phytopathology 67:1427–1431.

    Google Scholar 

  • Rudolph, K. 1972. The halo-blight toxin of Pseudomonas phaseolicola: Influence of host-parasite relationship and counter effect of metabolites, pp. 373–375. In: Wood, R. K. S., Ballio, A., Graniti, A. (eds.), Phytotoxins in plant diseases. London: Academic Press.

    Google Scholar 

  • Saad, S. M., Hagedorn, D. J. 1972. Relationship of isolate source to virulence of Pseudomonas syringae on Phaseolus vulgaris. Phytopathology 62:678–680.

    Google Scholar 

  • Sampson, P. J., Hayward, A. C. 1971. Some characteristics of pectolytic bacteria associated with potato in Tasmania. Australian Journal of Biological Science 24:917–923.

    CAS  Google Scholar 

  • Samulenko, V. I., Grozdyak, R. I. 1972. Distribution of bacteriophages of Pseudomonas spp. causing legume diseases in the rhizosphere of crop plants. [In Russian.] Mikrobiologichnii Zhurnal 34:518–520.

    Google Scholar 

  • Sands, D. C., Gleason, F. H., Hildebrand, D. C. 1967. Cytochromes of Pseudomonas syringae. Journal of Bacteriology 94:1785–1786.

    PubMed  CAS  Google Scholar 

  • Sands, D. C., Hankin, L., Zucker, M. 1972. A selective medium for pectolytic fluorescent pseudomonads. Phytopathology 62:998–1000.

    CAS  Google Scholar 

  • Sands, D. C., Schroth, M. N., Hildebrand, D. C. 1970. Taxonomy of phytopathogenic pseudomonads. Journal of Bacteriology 110:9–23.

    Google Scholar 

  • Sato, M., Takahashi, K. 1972. Ecological studies on the bacterial blight of mulberry. I. The overwintering of the pathogen, Pseudomonas mori (Boyer et Lambert) Stevens. Journal of Sericultural Science of Japan 41:285–293.

    Google Scholar 

  • Scarlett, C. M., Fletcher, J. T, Roberts, P., Lelliott, R. A. 1978. Tomato pith necrosis caused by Pseudomonas corrugata n. sp. Annals of Applied Biology 88:105–114.

    Google Scholar 

  • Schaad, N. W. 1979. Serological identification of plant pathogenic bacteria. Annual Review of Phytopathology 17:123–147.

    Google Scholar 

  • Schaad, N. W., Sowell, G., Jr., Goth, R. W., Colwell, R. R., Webb, R. E. 1978. Pseudomonas pseudoalcaligenes subsp. citrulli subsp. nov. International Journal of Systematic Bacteriology 28:117–125.

    Google Scholar 

  • Schroth, M. N., Thomson, S. V., Weinhold, A. R. 1978. Behavior of plant pathogenic bacteria in rhizosphere and nonrhizo-sphere soils. In: Krupa, S.V., Dommergues, Y. (eds.), Ecology of root pathogens. Amsterdam: Elsevier.

    Google Scholar 

  • Schroth, M. N., Vitanza, V. B., Hildebrand, D. C. 1971. Pathogenic and nutritional variation in the halo blight group of fluorescent pseudomonads of bean. Phytopathology 61:852–857.

    CAS  Google Scholar 

  • Schroth, M. N., Cho, J. J., Green, S. K., Kominos, S. D. 1977. Epidemiology of Pseudomonas aeruginosa in agricultural areas, pp. 1–29. In: Young, V. M. (ed.), Pseudomonas aeruginosa: Ecological aspects and patient colonization. New York: Raven Press.

    Google Scholar 

  • Sequeira, L., Williams, P. H. 1963. Synthesis of IAA by wild and mutant strains of Pseudomonas solanacearum. Plant Physiology 38:xxxvii. [Abstract.]

    Google Scholar 

  • Sinden, S. L., Durbin, R. D. 1970. A comparison of the chlorosis-inducing toxin from Pseudomonas coronafaciens with wildfire toxin from Pseudomonas tabaci. Phytopathology 60:360–364.

    CAS  Google Scholar 

  • Sinsabaugh, H. A., Howard, G. W., Jr. 1975. Emendation of the description of Pseudomonas cepacia Burkholder (Synonyms: Pseudomonas multivorans Stanier et al., Pseudomonas kingae Jonsson; EO-1 Group). International Journal of Systematic Bacteriology 25:187–201.

    Google Scholar 

  • Smith, E. F. 1896. A bacterial disease of the tomato, eggplant, and Irish potato (Bacillus solanacearum n. sp.). Bulletin, Division of Vegetable Physiology and Pathology, U.S. Department of Agriculture 12:1–28.

    Google Scholar 

  • Smith, J. L., Doetsch, R. N. 1968. Motility in Pseudomonas flu-orescens with special reference to survival advantage and negative Chemotaxis. Life Sciences. Part II. Biochemistry, General and Molecular Biology 7:875–886.

    CAS  Google Scholar 

  • Snell, J. J. S., Hill, L. R., Lapage, S. P., Curtis, M. A. 1972. Identification of Pseudomonas cepacia Burkholder and its synonymy with Pseudomonas kingii Jonsson. International Journal of Systematic Bacteriology 22:127–138.

    Google Scholar 

  • Stanier, R. Y, Palleroni, N. J., Doudoroff, M. 1966. The aerobic pseudomonads: A taxonomic study. Journal of General Microbiology 43:159–271.

    PubMed  CAS  Google Scholar 

  • Starr, M. P. 1959. Bacteria as plant pathogens. Annual Review of Microbiology 13:211–238.

    Google Scholar 

  • Steel, K. J. 1962. The practice of bacterial identification, pp. 405–432. In: Ainsworth, G. C., Sneath, P. H. A. (eds.), Microbial classification. Cambridge: Cambridge University Press.

    Google Scholar 

  • Stewart, W. W. 1971. Isolation and proof of structure of wildfire toxin. Nature 229:174–178.

    PubMed  CAS  Google Scholar 

  • Stolp, H. 1961. Neue Erkenntnisse ĂĽber phytopathogene Bakterien und die von ihnen verursachten Krankheiten. I. Verwandtschaftsbeziehungen zwischen phytopathogenen Pseudomonas-“Arten” und saprophytischen Fluoreszenten auf der Grundlage von Phagenreaktionen. Phytopathologische Zeitschrift 42:197–262.

    Google Scholar 

  • Stolp, H., Starr, M. P., Baigent, N. L. 1965. Problems in specia-tion of phytopathogenic pseudomonads and xanthomonads. Annual Review of Phytopathology 3:231–264.

    Google Scholar 

  • Strobel, G. A. 1977. Bacterial Phytotoxins. Annual Review of Microbiology 31:205–224.

    PubMed  CAS  Google Scholar 

  • Taylor, J. D. 1972. Specificity of bacteriophages and antiserum for Pseudomonas pisi. New Zealand Journal of Agricultural Research 15:421–431.

    Google Scholar 

  • Taylor, J. D., Dye, D. W. 1972. A survey of the organisms associated with bacterial blight of peas. New Zealand Journal of Agricultural Research 15:432–440.

    Google Scholar 

  • Taylor, P. A., Durbin, R. D. 1973. The production and properties of chlorosis-inducing toxins from a pseudomonad attacking timothy. Physiological Plant Pathology 3:9–17.

    CAS  Google Scholar 

  • Tesic, Z. 1972. The use of “special forms” in the classification of phytopathogenic bacteria, pp. 295–298. In: Maas Ge-esteranus, H. P. (ed.), Proceedings of the Third International Conference on Plant Pathogenic Bacteria. Wageningen: Centre for Agricultural Publishing and Documentation.

    Google Scholar 

  • Ulrich, J. M. 1975. Pectic enzymes of Pseudomonas cepacia and penetration of polygalacturonase into cells. Physiological Plant Pathology 5:37–44.

    CAS  Google Scholar 

  • Vidaver, A. K. 1976. Prospects for control of phytopathogenic bacteria by bacteriophages and bacteriocins. Annual Review of Phytopathology 14:451–465.

    Google Scholar 

  • Vidaver, A. K., Buckner, S. 1978. Typing of fluorescent phytopathogenic pseudomonads by bacteriocin production. Canadian Journal of Microbiology 24:14–18.

    PubMed  CAS  Google Scholar 

  • Vidaver, A. K., Mathys, M. L., Thomas, M. E., Schuster, M. L. 1972. Bacteriocins of the phytopathogens Pseudomonas syringae, P. glycinea, and P. phaseolicola. Canadian Journal of Microbiology 18:705–713.

    PubMed  CAS  Google Scholar 

  • von Graevenitz, A. 1977. The role of opportunistic bacteria in human disease. Annual Review of Microbiology 31:447–471.

    Google Scholar 

  • Wilkie, P. J., Dye, D. W., Watson, D. R. W. 1973. Further hosts of Pseudomonas viridiflava. New Zealand Journal of Agricultural Research 16:315–323.

    Google Scholar 

  • Wilson, E. E. 1965. Pathological histogenesis in oleander tumors induced by Pseudomonas savastanoi. Phytopathology 55:1244–1249.

    Google Scholar 

  • Wilson, E. E., Magie, A. R. 1964. Systemic invasion of the host plant by the tumor-inducing bacterium Pseudomonas savastanoi. Phytopathology 54:576–579.

    Google Scholar 

  • Wong, W. C., Preece, T. F. 1979. Identification of Pseudomonas tolaasi: The white line in agar and mushroom tissue block rapid pitting tests. Journal of Applied Bacteriology 47:401–407.

    Google Scholar 

  • Young, J. M., Dye, D. W., Bradbury, J. F., Panagopoulos, C. G., Robbs, C. F. 1978. A proposed nomenclature and classification for plant pathogenic bacteria. New Zealand Journal of Agricultural Research 21:153–177.

    Google Scholar 

  • Zurimi, I. 1973. Phage typing in Pseudomonas lachrymans. Research Institute of Plant Protection, Bucharest, Rumania, Analele Institutului de Cercetari Pentru Protectia Plantelor 11:63–66.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schroth, M.N., Hildebrand, D.C., Starr, M.P. (1981). Phytopathogenic Members of the Genus Pseudomonas . In: Starr, M.P., Stolp, H., TrĂĽper, H.G., Balows, A., Schlegel, H.G. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13187-9_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13187-9_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13189-3

  • Online ISBN: 978-3-662-13187-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics