Skip to main content

Part of the book series: Algorithms and Combinatorics ((AC,volume 17))

Summary

In our opinion, the Foundations of Cryptography are the paradigms, approaches and techniques used to conceptualize, define and provide solutions to natural cryptographic problems. In this chapter, we survey some of these paradigms, approaches and techniques as well as some of the fundamental results obtained using them. Special effort is made in attempt to dissolve common misconceptions regarding these paradigms and results.

It is possible to build a cabin with no foundations, but not a lasting building.

Eng. Isidor Goldreich (1906–1995)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Some Suggestions for Further Reading

  1. O. Goldreich. Foundation of Cryptography - Fragments of a Book. February 1995. Revised version, January 1998. Both versions are available from http://theory.lcs.mit.edu/oded/f rag. html.

    Google Scholar 

  2. S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and System Science, Vol. 28, No. 2, pages 270–299, 1984. Preliminary version in 14th ACM Symposium on the Theory of Computing, 1982.

    Google Scholar 

  3. O. Goldreich. Lecture Notes on Encryption, Signatures and Cryptographic Protocol. Spring 1989. Available from http://theory.lcs.mit.edu/r-oded/ln89.html.

  4. M. Blum and S. Goldwasser. An Efficient Probabilistic Public-Key Encryption Scheme which hides all partial information. In Crypto84, Lecture Notes in Computer Science (Vol. 196) Springer-Verlag, pages 289–302.

    Google Scholar 

  5. W. Alexi, B. Chor, O. Goldreich and C.P. Schnorr. RSA/Rabin Functions: Certain Parts are As Hard As the Whole. SIAM Journal on Computing, Vol. 17, April 1988, pages 194–209.

    Google Scholar 

  6. D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. In 23rd ACM Symposium on the Theory of Computing,pages 542–552, 1991. Full version available from authors.

    Google Scholar 

  7. S. Goldwasser, S. Micali, and R.L. Rivest. A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks. SIAM Journal on Computing, April 1988, pages 281–308.

    Google Scholar 

  8. B. Pfitzmann. Digital Signature Schemes (General Framework and Fail-Stop Signatures). Springer Lecture Notes in Computer Science (Vol. 1100), 1996.

    Google Scholar 

  9. M. Bellare and S. Micali. How to Sign Given Any Trapdoor Function. Journal of the ACM, Vol. 39, pages 214–233, 1992.

    Google Scholar 

  10. S. Even, O. Goldreich and S. Micali. On-line/Off-line Digital signatures. Journal of Cryptology, Vol. 9, 1996, pages 35–67.

    Google Scholar 

  11. C. Dwork, and M. Naor. An Efficient Existentially Unforgeable Signature Scheme and its Application. To appear in Journal of Cryptology. Preliminary version in Crypto94.

    Google Scholar 

  12. R. Cramer and I. Damg5,rd. New Generation of Secure and Practical RSA-based Signatures. In Crypto96, Springer Lecture Notes in Computer Science (Vol. 1109), pages 173–185.

    Google Scholar 

  13. D. Chaum. Blind Signatures for Untraceable Payments. In Crypto82, Plenum Press, pages 199–203, 1983.

    Google Scholar 

  14. M. Franklin and M. Yung. Secure and Efficient Off-Line Digital Money. In 20th ICALP, Springer-Verlag Lecture Notes in Computer Science (Vol. 700), pages 265–276.

    Google Scholar 

  15. R.M. Karp and M. Luby. Monte-Carlo algorithms for enumeration and reliability problems. In 24th IEEE Symposium on Foundations of Computer Science, pages 56–64, 1983. See [230].

    Google Scholar 

  16. A. Juels, M. Luby and R. Ostrovsky. Security of Blind Digital Signatures. In Crypto97, Springer Lecture Notes in Computer Science (Vol. 1294), pages 150–164.

    Google Scholar 

  17. M. Bellare, R. Canetti and H. Krawczyk. Keying Hash Functions for Message Authentication. In Crypto96, Springer Lecture Notes in Computer Science (Vol. 1109), pages 1–15.

    Google Scholar 

  18. O. Goldreich. Secure Multi-Party Computation. In preparation, 1998. Working draft available from http://theory.lcs.mit.edu/eroded/gmw.html.

  19. R. Canetti. Studies in Secure Multi-Party Computation and Applications. Ph.D. Thesis, Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel, June 1995. Available from http://theory.lcs.mit.eduRtcryptol/BOOKS/ran-phd.html.

    Google Scholar 

  20. R. Canetti. Security and Composition of Multi-party Cryptographic Protocols. Record 98–18 of the Theory of Cryptography Library, URL http: //theory.lcs.mit.edu/~tcryptol. June 1998.

    Google Scholar 

  21. R. Canetti. Towards Realizing Random Oracles: Hash Functions that Hide All Partial Information. In Crypto97, Springer Lecture Notes in Computer Science (Vol. 1294), pages 455–469.

    Google Scholar 

  22. R. Canetti, O. Goldreich and S. Halevi. The Random Oracle Methodology, Revisited. In 30th ACM Symposium on the Theory of Computing, pages 209218, 1998.

    Google Scholar 

  23. R. Canetti, D. Micciancio and O. Reingold Using one-way functions to construct Hash Functions that Hide All Partial Information. In 30th ACM Symposium on the Theory of Computing,pages 131–140, 1998.

    Google Scholar 

  24. M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. In Crypto93, Springer-Verlag Lecture Notes in Computer Science (Vol. 773), pages 232–249, 1994.

    Google Scholar 

  25. M. Bellare and P. Rogaway. Provably Secure Session Key Distribution: The Three Party Case. In 27th ACM Symposium on the Theory of Computing, pages 57–66, 1995.

    Google Scholar 

  26. M. Bellare, R. Canetti and H. Krawczyk. Modular Approach to the Design and Analysis of Authentication and Key Exchange Protocols. In 30th ACM Symposium on the Theory of Computing, pages 419–428, 1998.

    Google Scholar 

  27. M. Bellare, O. Goldreich and S. Goldwasser. Incremental Cryptography: the Case of Hashing and Signing. In Crypto94,Springer-Verlag Lecture Notes in Computer Science (Vol. 839), pages 216–233, 1994.

    Google Scholar 

  28. M. Bellare, O. Goldreich and S. Goldwasser. Incremental Cryptography and Application to Virus Protection. In 27th ACM Symposium on the Theory of Computing, pages 45–56, 1995.

    Google Scholar 

  29. R. Canetti and R. Gennaro. Incoercible Multiparty Computation. In 37th IEEE Symposium on Foundations of Computer Science, pages 504–513, 1996.

    Google Scholar 

  30. R. Canetti, C. Dwork, M. Naor and R. Ostrovsky. Deniable Encryption. In Crypto97, Springer Lecture Notes in Computer Science (Vol. 1294), pages 90104.

    Google Scholar 

  31. Y. Desmedt and Y. Frankel. Threshold Cryptosystems. In Crypto89, Springer-Verlag Lecture Notes in Computer Science (Vol. 435), pages 307–315.

    Google Scholar 

  32. A. De-Santis, Y. Desmedt, Y. Frankel and M. Yung. How to Share a Function Securely. In 26th ACM Symposium on the Theory of Computing, pages 522–533, 1994.

    Google Scholar 

  33. P.S. Gemmell An Introduction to Threshold Cryptography. In CryptoBytes, RSA Lab., Vol. 2, No. 3, 1997.

    Google Scholar 

  34. B. Chor, O. Goldreich, E. Kushilevitz and M. Sudan, Private Information Retrieval. In 36th IEEE Symposium on Foundations of Computer Science, pages 41–50, 1995.

    Google Scholar 

  35. B. Chor and N. Gilboa. Computationally Private Information Retrieval. In 29th ACM Symposium on the Theory of Computing, pages 304–313, 1997.

    Google Scholar 

  36. E. Kushilevitz and R. Ostrovsky. Replication is not Needed: A Single Database, Computational PIR. In 38th IEEE Symposium on Foundations of Computer Science, pages 364–373, 1997.

    Google Scholar 

  37. D. Boneh, R. DeMillo and R. Lipton. On the Importance of Checking Cryptographic Protocols for Faults. In EuroCrypt97, Springer Lecture Notes in Computer Science (Vol. 1233), pages 37–51, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goldreich, O. (1999). The Foundations of Modern Cryptography. In: Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Algorithms and Combinatorics, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-12521-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-12521-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08432-4

  • Online ISBN: 978-3-662-12521-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics