Skip to main content

Stipe Elongation in Fruit Bodies

  • Chapter
Growth, Differentiation and Sexuality

Part of the book series: The Mycota ((MYCOTA,volume 1))

Abstract

Many fungi form hyphae, tubular structures with relatively uniform diameters, while some fungi show yeast growth or yeast/mycelial dimorphism (see Chap. 8). It has long been suggested that the vegetative hypha grows at the tip (Reinhardt 1892) In more recent years, tip growth was unequivocally proven in the vegetative hyphae of various fungal species by studies using radioactive precursors of wall components, which were quickly incorporated into hyphal apices (Bartnicki-Garcia and Lippman 1969; Galun 1972; Gooday 1971; Katz and Rosenberger 1970, 1971; see Chap. 7). Hyphal growth with branching results in a mycelial colony. In many fungal species, mycelial growth is followed by the formation of asexual and/or sexual spores under appropriate environmental conditions. Fruit bodies are formed for the efficient production, release, and dispersal of sexual spores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bartnicki-Garcia S (1968) Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu Rev Microbiol 22:87–108

    PubMed  CAS  Google Scholar 

  • Bartnicki-Garcia S, Lippman E (1969) Fungal morphogenesis: cell wall construction in Mucor rouxii. Science 165:302–304

    PubMed  CAS  Google Scholar 

  • Blayney P, Marchant R (1977) Glycogen and protein inclusions in elongating stipes of Coprinus cinereus. J Gen Microbiol 98:467–476

    CAS  Google Scholar 

  • Bonner JT, Kane KK, Levey RH (1956) Studies on the mechanics of growth in the common mushroom, Agaricus campestris. Mycologia 48:13–19

    Google Scholar 

  • Borriss H (1934) Beitrage zur Wachstums- und Entwicklungsphysiologie der Fruchtkorper von Coprinus lagopus. Planta 22:28–69

    CAS  Google Scholar 

  • Bottom CB, Siehr DJ (1979) Structure of an alkali-soluble polysaccharide from the hyphal wall of the basidiomy-cete Coprinus macrorhizus var. microsporus. Carbohydr Res 77:169–181

    CAS  Google Scholar 

  • Bottom CB, Siehr DJ (1980) Structure and composition of the alkali-insoluble cell wall fraction of Coprinus macrorhizus var. microsporus. Can J Biochem 58:147–153

    PubMed  CAS  Google Scholar 

  • Bret JP (1977) Respective role of cap and mycelium on stipe elongation of Coprinus congregatus. Trans Br Mycol Soc 68:363–369

    Google Scholar 

  • Colson B (1935) The cytology of the mushroom, Psalliota campestris Quel. Ann Bot 49:1–18

    Google Scholar 

  • Cox RJ, Niederpruem DJ (1975) Differentiation in Coprinus lagopus. III. Expansion of excised fruit bodies. Arch Microbiol 105:257–260

    PubMed  CAS  Google Scholar 

  • Craig GD, Gull K, Wood DA (1977) Stipe elongation in Agaricus bisporus. J Gen Microbiol 102:337–347

    Google Scholar 

  • Craig GD, Newsam RJ, Gull K, Wood DA (1979) An ultrastructural and autoradiographic study of stipe elongation in Agaricus bisporus. Protoplasma 98:15–29

    Google Scholar 

  • Craig GD, Wood DA, Gull K (1981) Chitin synthase in the stipe of Agaricus bisporus (J. Lange) Imbach. FEMS Microbiol Lett 10:43–47

    CAS  Google Scholar 

  • Delmer DP (1987) Cellulose biosynthesis. Annu Rev Plant Physiol 38:259–290

    CAS  Google Scholar 

  • Eilers FI (1974) Growth regulation in Coprinus radiatus. Arch Microbiol 96:353–364

    Google Scholar 

  • Endo A, Kakiki K, Misato T (1970) Mechanism of action of the antifungal agent polyoxin D. J Bacteriol 104: 189–196

    PubMed  CAS  Google Scholar 

  • Ewaze JO, Moore D, Stewart GR (1978) Co-ordinate regulation of enzymes involved in ornithine metabolism and its relation to sporophore morphogenesis in Coprinus cinereus. J Gen Microbiol 107:343–357

    CAS  Google Scholar 

  • Fry SC (1988) The growing plant cell wall: chemical and metabolic analysis. Wiley, New York

    Google Scholar 

  • Galun E (1972) Morphogenesis of Trichoderma: autoradiography of intact colonies labelled by (3H) N-acetylgluco-samine as a marker for new cell wall biogenesis. Arch Mikrobiol 86:305–314

    PubMed  CAS  Google Scholar 

  • Garcia Mendoza C, Avellan MA, Sanchez E, Novaes-Ledieu M (1987) Differentiation and wall chemistry of Agaricus bisporus vegetative and aggregated mycelia. Arch Microbiol 148:68–71

    Google Scholar 

  • Girbardt M (1969) Die Ultrastruktur der Apikairegion von Pilzhyphen. Protoplasma 67:413–441

    Google Scholar 

  • Gooday GW (1971) An autoradiographic study of hyphal growth of some fungi. J Gen Microbiol 67:125–133

    CAS  Google Scholar 

  • Gooday GW (1972) The role of chitin synthetase in the elongation of fruit bodies of Coprinus einer eus. J Gen Microbiol 73:xxi

    Google Scholar 

  • Gooday GW (1973) Activity of chitin synthetase during the development of fruit bodies of the toadstool Coprinus cinereus. Biochem Soc Trans 1:1105–1107

    CAS  Google Scholar 

  • Gooday GW (1974) Control of development of excised fruit bodies and stipes of Coprinus cinereus. Trans Br Mycol Soc 62:391–399

    Google Scholar 

  • Gooday GW (1975) The control of differentiation in fruit bodies of Coprinus cinereus. Rep Tottori Mycol Inst (Japan) 12:151–160

    Google Scholar 

  • Gooday GW (1979) Chitin synthesis and differentiation in Coprinus cinereus. In: Burnett JH, Trinci APJ (eds) Fungal walls and hyphal growth. Cambridge University Press, Cambridge, pp 203–223

    Google Scholar 

  • Gooday GW (1982) Metabolic control of fruitbody morphogenesis in Coprinus cinereus. In: Wells K, Wells EK (eds) Basidium and basidiocarp: evolution, cytology, function, and development. Springer, Berlin Heidelberg New York, pp 157–173

    Google Scholar 

  • Gooday GW (1985) Elongation of the stipe of Coprinus cinereus. In: Moore D, Casselton LA, Wood DA, Frankland JC (eds) Developmental biology of higher fungi. Cambridge University Press, Cambridge, pp 311–331

    Google Scholar 

  • Gooday GW, de Rousset-Hall A, Hunsley D (1976) Effect of Polyoxin D on chitin synthesis in Coprinus cinereus. Trans Br Mycol Soc 67:193–200

    Google Scholar 

  • Gow NAR, Gooday GW (1983) Ultrastructure of chitin in hyphae of Candida albicans and other dimorphic and mycelial fungi. Protoplasma 115:52–58

    Google Scholar 

  • Gruen HE (1963) Endogenous growth regulation in carpophores of Agaricus bisporus. Plant Physiol 38:652–666

    PubMed  CAS  Google Scholar 

  • Gruen HE (1967) Growth regulation in fruit bodies of Agaricus bisporus. Mushroom Sci 6:103–120

    Google Scholar 

  • Gruen HE (1969) Growth and rotation of Flammulina velutipes fruit bodies and the dependence of stipe elongation on the cap. Mycologia 61:149–166

    Google Scholar 

  • Gruen HE (1976) Promotion of stipe elongation in Flammulina velutipes by a diffusate from excised lamellae supplied with nutrients. Can J Bot 54:1306–1315

    Google Scholar 

  • Gruen HE (1979) Control of rapid stipe elongation by the lamellae in fruit bodies of Flammulina velutipes. Can J Bot 57:1131–1135

    Google Scholar 

  • Gruen HE (1982) Control of stipe elongation by the pileus and mycelium in fruitbodies of Flammulina velutipes and other agaricales. In: Wells K, Wells EK (eds) Basidium and basidiocarp: evolution, cytology, function, and development. Springer, Berlin Heidelberg New York, pp 125–155

    Google Scholar 

  • Gruen HE, Wong WM (1982) Distribution of cellular amino acids, protein, and total organic nitrogen during fruitbody development in Flammulina velutipes. I. Growth on sawdust medium. Can J Bot 60:1330–1341

    CAS  Google Scholar 

  • Gruen HE, Wu S (1972a) Promotion of stipe elongation in isolated Flammulina velutipes fruit bodies by carbohydrates, natural extracts, and amino acids. Can J Bot 50:803–818

    CAS  Google Scholar 

  • Gruen HE, Wu S (1972b) Dependence of fruit-body elongation on the mycelium in Flammulina velutipes. Mycologia 64:995–1007

    Google Scholar 

  • Hafner L, Thielke C (1970) Kernzahl und Zellgrosse im Fruchtkörperstiel von Coprinus radiatus (Solt) Fr. Ber Dtsch Bot Ges 83:27–31

    Google Scholar 

  • Hagimoto H (1964) On the growth of the fruit body of Agaricus bisporus (Lange) Sing. Trans Mycol Soc Jpn 4:158–164

    Google Scholar 

  • Hagimoto H, Konishi M (1959) Studies on the growth of fruit body of fungi I. Existence of a hormone active to the growth of fruit body in Agaricus bisporus (Lange) Sing. Bot Mag Tokyo 72:359–366

    Google Scholar 

  • Hagimoto H, Konishi M (1960) Studies on the growth of fruit body of fungi II. Activity and stability of the growth hormone in the fruit body of Agaricus bisporus (Lange) Sing. Bot Mag Tokyo 73:283–287

    CAS  Google Scholar 

  • Hammad F, Ji J, Watling R, Moore D (1993a) Cell population dynamics in Coprinus cinereus: co-ordination of cell inflation throughout the maturing basidiome. Mycol Res 97:269–274

    Google Scholar 

  • Hammad F, Watling R, Moore D (1993b) Cell population dynamics in Coprinus cinereus: narrow and inflated hyphae in the basidiome stipe. Mycol Res 97:275–282

    Google Scholar 

  • Hammond JBW, Nichols R (1976) Carbohydrate metabolism in Agaricus bisporus (Lange) Sing.: changes in soluble carbohydrates during growth of mycelium and sporophore. J Gen Microbiol 93:309–320

    PubMed  CAS  Google Scholar 

  • Hatton JP, Moore D (1992) Kinetics of stem gravitropism in Coprinus cinereus: determination of presentation time and “dosage-response” relationships using clino-stats. FEMS Microbiol Lett 100:81–86

    Google Scholar 

  • Hunsley D, Burnett JH (1968) Dimensions of microfibrillar elements in fungal walls. Nature 218:462–463

    Google Scholar 

  • Hunsley D, Burnett JH (1970) The ultrastructural architecture of the walls of some hyphal fungi. J Gen Microbiol 62:203–218

    CAS  Google Scholar 

  • Ji J, Moore D (1993) Glycogen metabolism in relation to fruit body maturation in Coprinus cinereus. Mycol Res 97:283–289

    CAS  Google Scholar 

  • Kamada T, Takemaru T (1977a) Stipe elongation during basidiocarp maturation in Coprinus macrorhizus: mechanical properties of stipe cell wall. Plant Cell Physiol 18:831–840

    Google Scholar 

  • Kamada T, Takemaru T (1977b) Stipe elongation during basidiocarp maturation in Coprinus macrorhizus: changes in polysaccharide composition of stipe cell wall during elongation. Plant Cell Physiol 18:1291–1300

    CAS  Google Scholar 

  • Kamada T, Takemaru T (1983) Modifications of cell-wall polysaccharides during stipe elongation in the basidio-mycete Coprinus cinereus. J Gen Microbiol 129:703–709

    CAS  Google Scholar 

  • Kamada T, Tsuji M (1979) Darkness-induced factor affecting basidiocarp maturation in Coprinus macrorhizus. Plant Cell Physiol 20:1445–1448

    Google Scholar 

  • Kamada T, Tsuru M (1993) The onset of the helical arrangement of chitin microfibrils in fruit body development of Coprinus cinereus. Mycol Res 97:884–888

    Google Scholar 

  • Kamada T, Miyazaki S, Takemaru T (1976) Quantitative changes of DNA, RNA and protein during basidiocarp maturation in Coprinus macrorhizus. Trans Mycol Soc Jpn 17:451–460

    CAS  Google Scholar 

  • Kamada T, Kurita R, Takemaru T (1978) Effects of light on basidiocarp maturation in Coprinus macrorhizus. Plant Cell Physiol 19:263–275

    Google Scholar 

  • Kamada T, Fujii T, Takemaru T (1980) Stipe elongation during basidiocarp maturation in Coprinus macrorhizus: changes in activity of cell wall lytic enzymes. Trans Mycol Soc Jpn 21:359–367

    Google Scholar 

  • Kamada T, Hamada Y, Takemaru T (1982) Autolysis in vitro of the stipe cell wall in Coprinus macrorhizus. J Gen Microbiol 128:1041–1046

    CAS  Google Scholar 

  • Kamada T, Katsuda H, Takemaru T (1984) Temperature-sensitive mutants of Coprinus cinereus defective in hyphal growth and stipe elongation. Curr Microbiol 11:309–312

    Google Scholar 

  • Kamada T, Fujii T, Nakagawa T, Takemaru T (1985) Changes in (1 → 3)-β-glucanase activities during stipe elongation in Coprinus cinereus. Curr Microbiol 12: 257–260

    CAS  Google Scholar 

  • Kamada T, Sumiyoshi T, Takemaru T (1989) Mutations in β-tubulin block transhyphal migration of nuclei in dikaryosis in the homobasidiomycete Coprinus cinereus. Plant Cell Physiol 30:1073–1080

    Google Scholar 

  • Kamada T, Takemaru T, Prosser JI, Gooday GW (1991) Right- and left-handed helicity of chitin microfibrils in stipe cells in Coprinus cinereus. Protoplasma 165:64–70

    Google Scholar 

  • Katz D, Rosenberger RF (1970) The utilisation of galactose by an Aspergillus nidulans mutant lacking galactose phosphate-UDP transferase and its relation to cell wall synthesis. Arch Mikrobiol 74:41–51

    PubMed  CAS  Google Scholar 

  • Katz D, Rosenberger RF (1971) Hyphal wall synthesis in Aspergillus nidulans: effect of protein synthesis inhibition and osmotic shock on chitin insertion and morphogenesis. J Bacteriol 108:184–190

    PubMed  CAS  Google Scholar 

  • Kher K, Greening JP, Hatton JP, Frazer LN, Moore D (1992) Kinetics and mechanics of stem gravitropism in Coprinus cinereus. Mycol Res 96:817–824

    PubMed  CAS  Google Scholar 

  • Kitamoto Y, Gruen HE (1976) Distribution of cellular carbohydrates during development of the mycelium and fruitbodies of Flammulina velutipes. Plant Physiol 58: 485–491

    PubMed  CAS  Google Scholar 

  • Koch AL (1988) Biophysics of bacterial walls viewed as stress-bearing fabric. Microbiol Rev 52:337–353

    PubMed  CAS  Google Scholar 

  • Konishi M (1967) Growth-promoting effect of certain amino acids on the Agaricus fruit body. Mushroom Sci 6:121–134

    Google Scholar 

  • Kreger DR (1954) Observation on cell wall of some yeasts and other fungi by X-ray diffraction and solubility tests. Biochim Biophys Acta 13:1–9

    PubMed  CAS  Google Scholar 

  • Lloyd CW (1984) Towards a dynamic helical model for the influence of microtubules on wall patterns in plants. Int Rev Cytol 86:1–51

    Google Scholar 

  • Lu BC (1974) Meiosis in Coprinus. V. The role of light on basidiocarp initiation, mitosis, and hymenium differentiation in Coprinus lagopus. Can J Bot 52:299–305

    Google Scholar 

  • Madelin MF (1956) Studies on the nutrition of Coprinus lagopus Fr., especially as affecting fruiting. Ann Bot 20:307–330

    CAS  Google Scholar 

  • Madelin MF (1960) Visible changes in the vegetative mycelium of Coprinus lagopus Fr. at the time of fruiting. Trans Br Mycol Soc 43:105–110

    Google Scholar 

  • Manocha MS (1965) Fine structure of the Agaricus carpophore. Can J Bot 343:1329–1333

    Google Scholar 

  • Marchant R (1978) Wall composition of monokaryons and dikaryons of Coprinus cinereus. J Gen Microbiol 106:195–199

    CAS  Google Scholar 

  • Matthews TR, Niederpruem DJ (1973) Differentiation in Coprinus lagopus. II. Histology and ultrastructural aspects of developing primordia. Arch Mikrobiol 88: 169–180

    PubMed  CAS  Google Scholar 

  • Mita T, Shibaoka H (1983) Changes in microtubules in onion leaf sheath cells during bulb development. Plant Cell Physiol 24:109–117

    Google Scholar 

  • Mol PC, Wessels JGH (1990) Differences in wall structure between substrate hyphae and hyphae of fruit-body stipes in Agaricus bisporus. Mycol Res 94:472–479

    Google Scholar 

  • Mol PC, Vermeulen CA, Wessels JGH (1990) Diffuse extension of hyphae in stipes of Agaricus bisporus may be based on a unique wall structure. Mycol Res 94: 480–488

    Google Scholar 

  • Moore D (1991) Perception and response to gravity in higher fungi — a critical appraisal. New Phytol 117:3–23

    PubMed  CAS  Google Scholar 

  • Moore D, Elhiti MMY, Butler RD (1979) Morphogenesis of the carpophore of Coprinus cinereus. New Phytol 83:695–722

    CAS  Google Scholar 

  • Murakami S, Takemaru T (1980) Nuclear number in stipe cells of some Hymenomycetes. Rep Tottori Mycol Inst (Japan) 18:143–148

    Google Scholar 

  • Neville AC (1988) The need for a constraining layer in the formation of monodomain helicoids in a wide range of biological structure. Tissue Cell 20:133–143

    PubMed  CAS  Google Scholar 

  • Novaes-Ledieu M, Garcia Mendoza C (1981) The cell walls of Agaricus bisporus and Agaricus campestris fruiting body hyphae. Can J Microbiol 27:779–787

    PubMed  CAS  Google Scholar 

  • Rao PS, Niederpruem DJ (1969) Carbohydrate metabolism during morphogenesis of Coprinus lagopus (sensu Buller). J Bacteriol 100:1222–1228

    PubMed  CAS  Google Scholar 

  • Raper JR (1966) Genetics of sexuality in higher fungi. Ronald, New York

    Google Scholar 

  • Reijnders AFM (1993) On the origin of specialized trama types in the Agaricales. Mycol Res 97:257–268

    Google Scholar 

  • Reinhardt MO (1892) Das Wachsthum der Pilzhyphen. Jahrb Wiss Bot 23:479–566

    Google Scholar 

  • Robert JC (1977a) Fruiting of Coprinus congregatus: biochemical changes in fruit-bodies during morphogenesis. Trans Br Mycol Soc 68:379–387

    Google Scholar 

  • Robert JC (1977b) Fruiting of Coprinus congregatus: relationship to biochemical changes in the whole culture. Trans Br Mycol Soc 68:389–395

    Google Scholar 

  • Schaefer HP (1977) An alkali-soluble polysaccharide from the cell walls of Coprinus lagopus. Arch Microbiol 113: 79–82

    PubMed  CAS  Google Scholar 

  • Stephenson NA, Gooday GW (1984) Nuclear numbers in the stipe cells of Coprinus cinereus. Trans Br Mycol Soc 82:531–534

    Google Scholar 

  • Takemaru T, Kamada T (1971) Gene control of basidiocarp development in Coprinus macrorhizus. Rep Tottori Mycol Inst (Japan) 9:21–35

    Google Scholar 

  • Takemaru T, Kamada T (1972) Basidiocarp development in Coprinus macrorhizus. I. Induction of developmental variations. Bot Mag Tokyo 85:51–57

    CAS  Google Scholar 

  • Thielke C (1969) Die Substruktur der Zellen im Fruchtkörper von Psalliota bispora. Mushroom Sci 7:23–30

    Google Scholar 

  • Urayama T (1956) Das Wuchshormon des Fruchtkörpers von Agaricus campestris L. (Vorläufige Mitteilung). Bot Mag Tokyo 69:298–299

    Google Scholar 

  • Vincent-Davies S (1972) Relationships between Mycogone perniciosa Magnus and its host Agaricus bisporus (Large) Sing., the cultivated mushroom. PhD Thesis, University of Bath

    Google Scholar 

  • Wakita S (1958) Biochemical studies on Collybia velutipes. IV. Relation between the growth and the fructification of fungus. J Agric Chem Soc Jpn 32:562–566

    CAS  Google Scholar 

  • Wardrop AB, Wolters-Arts M, Sassen MMA (1979) Changes in microfibril orientation in walls of elongating plant cells. Acta Bot Neerl 28:313–333

    Google Scholar 

  • Wessels JGH, Sietsma JH (1981) Fungal cell walls: a survey. In: Tanner W, Loewus FA (eds) Encyclopedia of plant physiology new series, vol 13B, Plant carbohydrates II. Springer, Berlin Heidelberg New York, pp 352–394

    Google Scholar 

  • Wong WM, Gruen HE (1977) Changes in cell size and nuclear number during elongation of Flammulina velutipes fruitbodies. Mycologia 69:899–913

    Google Scholar 

  • Wood DA, Hammond JBW (1977) Inhibition of growth and development of Agaricus bisporus by polyoxin D. J Gen Microbiol 98:625–628

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kamada, T. (1994). Stipe Elongation in Fruit Bodies. In: Wessels, J.G.H., Meinhardt, F. (eds) Growth, Differentiation and Sexuality. The Mycota, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-11908-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-11908-2_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-11910-5

  • Online ISBN: 978-3-662-11908-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics