Skip to main content

Part of the book series: The Mycota ((MYCOTA,volume 1))

Abstract

Many theories of aging have been advanced (Warner et al. 1987), but none of them are generally accepted (Schneider 1987). In general, two basically different views are discussed. These are the stochastic theories, which postulate the random accumulation of destructive events such as the cross-linking theory of cellular constituents (Bjorksten 1968), the error catastrophe theory (Orgel 1963), the free-radical theory (Harman 1956) and the wear-and-tear or rate-of-living theories (Pearl 1924, 1928). The second group of theories are the nonstochastic (regulatory) theories, which suggest that the aging process is a genetically programed event, such as, for example, the cell death theory (Hayflick 1968).

This chapter is dedicated to Prof. Dr. Dr.h.c. Karl Esser on the occasion of his 70th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akins RA, Kelley RL, Lambowitz AM (1986) Mitochondrial plasmids of Neurospora: integration into mitochondrial DNA and evidence for reverse transcription in mitochondria. Cell 47:505–516

    CAS  PubMed  Google Scholar 

  • Akins RA, Kelly RL, Lambowitz AM (1989) Characterization of mutant mitochondrial plasmids of Neurospora species that have incorporated tRNAs by reverse transcription. Mol Cell Biol 9:678–691

    CAS  PubMed  Google Scholar 

  • Allen RA, Baiin AK, Reimer RJ, Sohal RS, Nations C (1988) Superoxide dismutase induces differentiation in microplasmodia of the slime mold Physarum poly-cephalum. Arch Biochem Biophys 261:205–211

    CAS  PubMed  Google Scholar 

  • Allen RG, Balin K (1989) Oxidative influence on development and differentiation: an overview of a free radical theory of development. Free Radic Biol Med 6:631–661

    CAS  PubMed  Google Scholar 

  • Allen RG, Venkatraj VS (1992) Oxidants and antioxidants in development and differentiation. J Nutr 122:631–635

    CAS  PubMed  Google Scholar 

  • Allen RG, Newton RK, Sohal RS, Shipley GL, Nations C (1985) Alterations in superoxide dismutase, glutathione, and peroxides in the plasmodial slime mold Physarum polycephalum during differentiation. J Cell Physiol 125:413–419

    CAS  PubMed  Google Scholar 

  • Almasan A, Mishra NC (1988) Molecular characterization of the mitochondrial DNA of a new stopper mutant ER-3 of Neurospora crassa. Genetics 120:935–945

    CAS  PubMed  Google Scholar 

  • Bandy B, Davison AJ (1990) Mitochondrial mutations may increase oxidative stress: implications for carcinogenesis and aging? Free Radic Biol Med 8:523–539

    CAS  PubMed  Google Scholar 

  • Bast A, Haenen GRMM, Doelman JA (1991) Oxidants and antioxidants: state of the art. Symposium on oxidants and antioxidants. Am J Med 91:1–13

    Google Scholar 

  • Belcour L, Begel O (1980) Life-span and senescence in Podospora anserina: Effect of mitochondrial genes and functions. J Gen Microbiol 119:505–515

    CAS  Google Scholar 

  • Belcour L, Vierny C (1986) Variable DNA splicing sites of a mitochondrial intron: relationship to the senescence process in Podospora. EMBO J 5:609–614

    CAS  PubMed  Google Scholar 

  • Belcour L, Begel O, Mossé MO, Vierny C (1981) Mitochondrial DNA amplifications in senescent cultures of Podospora anserina: variability between the retained, amplified sequences. Curr Genet 3:13–21

    CAS  Google Scholar 

  • Belcour L, Begel O, Picard M (1991) A site-specific deletion in mitochondrial DNA of Podospora anserina is under the control of nuclear genes. Proc Natl Acad Sci USA 88:3579–3583

    CAS  PubMed  Google Scholar 

  • Belcour LF, Koll F, Vierny A, Sainsard-Chanet, Begel O (1986) Are proteins encoded in mitochondrial introns involved in the process of senescence in the fungus Podospora anserina? In: Courtois Y, Faucheux B, Forette B, Knook DL, Tréton JA (eds) Modem trends in aging research. John Libbey Eurotext, London, pp 68–71

    Google Scholar 

  • Bernet J (1991) Aerial organs and cell death in Podospora anserina mutants: relationship with protoplasmic incompatibility. Exp Mycol 15:215–222

    Google Scholar 

  • Bernet J (1992a) In Podospora anserina, protoplasmic incompatibility genes are involved in cell death control via multiple gene interactions. Heridity 68:79–87

    Google Scholar 

  • Bernet J (1992b) A gene suppressing the allelic protoplasmic incompatibility specified by genes at five different loci in Podospora anserina. J Gen Microbiol 138:2567–2574

    CAS  Google Scholar 

  • Bertrand H, Pittenger TH (1968) Cytoplasmatic mutants selected from continuously growing cultures of Neurospora crassa. Genetics 61:643–659

    Google Scholar 

  • Bertrand H, Collins RA, Strohl LL, Goewert RR, Lambowitz AM (1980) Deletion mutants of Neurospora crassa mitochondrial DNA and their relationship to stop-start growth phenotype. Proc Natl Acad Sci USA 77:6032–6036

    CAS  PubMed  Google Scholar 

  • Bertrand H, Chan BS-S, Griffith AJF (1985) Insertion of a foreign nucleotide sequence into mitochondrial DNA causes senescence in Neurospora intermedia. Cell 41: 877–884

    CAS  PubMed  Google Scholar 

  • Bjorksten J (1986) The crosslinking theory of aging. J Am Geriatr Soc 16:408–427

    Google Scholar 

  • Böckelmann B, Esser K (1986) Plasmids of mitochondrial origin in senescent mycelia of Podospora curvicolla. Curr Genet 10:803–810

    PubMed  Google Scholar 

  • Boucherie H, Bernet J (1974) Protoplasmic incompatibility and female organ formation in Podospora anserina: properties of mutations abolishing both processes. Mol Gen Genet 135:163–174

    CAS  PubMed  Google Scholar 

  • Boucherie H, Bernet J (1980) Protoplasmic incompatibility in Podospora anserina: a possible function for incompatibility genes. Genetics 96:399–411

    CAS  PubMed  Google Scholar 

  • Brunk UT, Jones CB, Sohal RS (1992) A novel hypothesis of lipofuscinogenesis and cellular aging based on interactions between oxidative stress and autophagocytosis. Mutat Res 275:395–403

    CAS  PubMed  Google Scholar 

  • Caten CE (1972) Vegetative incompatibility and cytoplasmic infection in fungi. J Gen Microbiol 72:221–229

    CAS  PubMed  Google Scholar 

  • Cerutti P (1985) Prooxidant state in tumor promotion. Science 227:375–381

    CAS  PubMed  Google Scholar 

  • Cerutti P (1987) The role of DNA damage and its repair in aging: future directions of research. In: Warner HR, Butler RN, Sprott RL, Schneider EL (eds) Modern biological theories of aging. Raven, New York, pp 205–206

    Google Scholar 

  • Chan BS-S, Court DA, Vierula J, Bertrand H (1991) The kalilo linear senescence-inducing plasmid of Neurospora is an invertron and encodes DNA and RNA polymerases. Curr Genet 20:225–237

    CAS  PubMed  Google Scholar 

  • Clark J, Hakim R (1980a) Nuclear sieving of Didymium iridis plasmodia. Exp Mycol 4:17–22

    Google Scholar 

  • Clark J, Hakim R (1980b) Aging of plasmodial hetero-caryons in Didymium iridis. Mol Gen Genet 178:419–422

    Google Scholar 

  • Clark J, Mulleavy P (1982) The effects of Polyploidie on life-span of Didymium iridis. Exp Mycol 6:71–76

    Google Scholar 

  • Court DA, Bertrand H (1992) Genetic organization and structural features of maranhar, a senescence-inducing linear mitochondrial plasmid of Neurospora crassa. Curr Genet 22:385–397

    CAS  PubMed  Google Scholar 

  • Court DA, Griffiths AJF, Kraus SR, Russell PJ, Bertrand H (1991) A new senescence-inducing mitochondrial linear plasmid in field-isolated Neurospora crassa strains from India. Curr Genet 19:129–137

    CAS  PubMed  Google Scholar 

  • Cummings DJ, Belcour L, Grandchamp C (1979) Mitochondrial DNA from Podospora anserina. II. Properties of mutant DNA and multfmeric circular DNA from senescent cultures. Mol Gen Genet 171:239–250

    CAS  PubMed  Google Scholar 

  • Cummings DJ, MacNeil I A, Domenico J, Matsuura ET (1985) Excision-amplification of mitochondrial DNA during senescence in Podospora anserina. DNA sequence analysis of three unique plasmids. J Mol Biol 185:659–680

    CAS  PubMed  Google Scholar 

  • Cummings DJ, Domenico JM, Turker MS (1987) Mitochondrial genomic changes during senescence in fungi. In: Thomson WW, Nothnagel EA, Huffaker RC (eds) Plant senescence: its biochemistry and physiology. The American Society of Plant Physiologists, Bethesda, MD, pp 31–42

    Google Scholar 

  • de Vries H, de Jonge JC, van’t Sant P, Agsteribbe E, Arnberg A (1981) A “stopper” mutant of Neurospora crassa containing two populations of aberrant mitochondrial DNA. Curr Genet 3:205–211

    Google Scholar 

  • de Vries H, Alzner-DeWeerd B, Breitenberger CA, Chang DD, de Jonge JC, RajBhandary U (1986) The E35 stopper mutant of Neurospora crassa: precise localization of deletion endpoints in mitochondrial DNA and evidence that the deleted DNA codes for a subunit of NADH dehydrogenase. EMBO J 5:779–785

    PubMed  Google Scholar 

  • Dequard-Chablat M, Coppin-Raynal E, Picard-Bennoun Mand Madjar J-J (1986) At least seven ribosomal proteins are involved in the control of translational accuracy in an eucaryotic organism. J Mol Biol 190:167–175

    CAS  PubMed  Google Scholar 

  • Douzou P, Maurel P (1977) Ionic regulation in genetic translation systems. Proc Natl Sci USA 74:1013–1025

    CAS  Google Scholar 

  • Durrens P, Bernet J (1982) Podospora anserina mutations inhibiting several developmental alternatives and growth renewal. Curr Genet 5:181–185

    Google Scholar 

  • Esser K (1985) Genetic control of ageing: the mobile intron model. In: Bergener M, Emmini M, Stähelin HB (eds) The 1984 Sandoz lectures in gerontology. Academic Press, London, pp 3–20

    Google Scholar 

  • Esser K, Keller W (1976) Genes inhibiting senescence in the ascomycete Podospora anserina. Mol Gen Genet 144:107–110

    CAS  PubMed  Google Scholar 

  • Foote CS (1976) Photosensitized oxidation and singlet oxygen: consequences in biological systems. In: Pryor WA (ed) Free radicals in biology, vol II. Academic Press, New York, pp 85–133

    Google Scholar 

  • Frese D (1993) Die molekularbiologische Analyse der physiologischen Phänomene des Seneszenzsyndroms bei dem Ascomyceten Podospora anserina. Dissertation, Fachgebiet Mikrobiologie und Genetik, Institut für Biotechnologie, TU Berlin

    Google Scholar 

  • Frese D, Stahl U (1991) Delaying the aging process by the means of radical inhibitors — effect on cosmetic products. Parfumerie Kosmetik 72:569–574

    CAS  Google Scholar 

  • Frese D, Stahl U (1992) Oxidative stress and ageing in the fungus Podospora anserina. Mech Ageing Dev 65: 277–288

    CAS  PubMed  Google Scholar 

  • Gramss G (1985) Invasion of wood by basidiomycetous fungi. I. Pathosism and saprophytism as determinded by certain experimentally accessible virulence properties. J Basic Microbiol 25:305–324

    Google Scholar 

  • Gramss G (1991a) “Definitive senescence” in stock cultures of basidiomycetous wood-decay fungi. J Basic Microbiol 31:107–112

    Google Scholar 

  • Gramss G (1991b) Appearance of senescent sectors in the ageing vegetative thallus of several basidiomycetous fungi held in pure culture. J Basic Microbiol 31:113–120

    Google Scholar 

  • Griffiths AJF, Bertrand H (1984) Unstable cytoplasms in Hawaiian strains of Neurospora intermedia. Curr Genet 8:387–398

    Google Scholar 

  • Griffiths AJF, Xiao Y, Barton, Myers C (1992) Suppression of cytoplasmic senescence in Neurospora. Curr Genet 21:479–484

    CAS  PubMed  Google Scholar 

  • Gross SR, Hsieh T, Levine PH (1984) Intramolecular recombination as a source of mitochondrial chromosome heteromorphism in Neurospora. Cell 38:233–239

    CAS  PubMed  Google Scholar 

  • Gross SR, Levine AM, Levine PH (1989a) Change in chromosome number associated with a double deletion in the Neurospora crassa mitochondrial genome. Genetics 121:685–691

    CAS  PubMed  Google Scholar 

  • Gross SR, Levine PH, Metzger S, Glaser G (1989b) Recombination and replication of plasmid-like derivatives of a short section of the mitochondrial chromosome of Neurospora crassa. Genetics 121:693–701

    CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14

    CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1988) Iron as a biological pro-oxidant. ISI Atlas of Science: Biochemistry: 48–52

    Google Scholar 

  • Hansberg W, DeGroot H, Sies H (1993) Reactive oxygen species associated with cell differentiation in Neurospora crassa. Free Rad Biol Med 14:287–293

    CAS  PubMed  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    CAS  PubMed  Google Scholar 

  • Hayflick L (1968) Human cells and aging. Sci Am 218: 32–37

    CAS  PubMed  Google Scholar 

  • Hermanns J, Osiewacz HD (1992) The linear mitochondrial plasmid pAL2-l of a long-lived Podospora anserina mutant is an invertron encoding a DNA and RNA polymerase. Curr Genet 22:491–500

    CAS  PubMed  Google Scholar 

  • Hu FS, Clark J, Lott T (1985) Recurrent senescence in axenic cultures of Physarum polycephalum. J Gen Microbiol 131:811–815

    CAS  PubMed  Google Scholar 

  • James-Vierny C, Begel O, Belcour L (1980), Senescence in Podospora anserina: amplification of a mitochondrial DNA sequence. Cell 21:189–194

    Google Scholar 

  • Jinks JL (1959) Lethal suppressive cytoplasms in aged clones of Aspergillus glaucus. J Gen Microbiol 21: 397–409

    CAS  Google Scholar 

  • Kirkwood TBL (1985) Comparative and evolutionary aspects of longevity. In: Finch CE, Schneider EL (eds) Handbook of the biology of aging, 2nd edn. Van Nostrand Reinhold, New York, pp 27–44

    Google Scholar 

  • Kirkwood TBL, Rose MR (1991) Evolution of senescence: late survival sacrificed for reproduction. Philos Trans R Soc Lond B 332:15–24

    CAS  Google Scholar 

  • Koll F, Begel O, Keller A-M, Vierny C, Belcour L (1984) Ethidium bromide rejuvenation of senescent cultures of Podospora anserina: loss of senescence-specific DNA and recovery of normal mitochondrial DNA. Curr Genet 8:127–134

    CAS  Google Scholar 

  • Koll F, Belcour L, Vierny C (1985) A 1100 bp sequence of mitochondrial DNA is involved in senescence process in Podospora: study of senescent and mutant cultures. Plasmid 14:106–117

    CAS  PubMed  Google Scholar 

  • Kretsinger RH (1980) Mechanisms of selective signalling by calcium. Neurosci Res Program Bull. 19:211–328

    Google Scholar 

  • Kück U, Stahl U, Esser K (1981) Plasmid-like DNA is part of mitochondrial DNA in Podospora anserina. Curr Genet 3:151–156

    Google Scholar 

  • Kück U, Kappelhoff B, Esser K (1985a) Despite mtDNA polymorphism the mobile intron (plDNA) of the COI gene is present in ten different races of Podospora anserina. Curr Genet 10:59–67

    Google Scholar 

  • Kück U, Osiewacz HD, Schmidt U, Kappelhoff B, Schulte E, Stahl U, Esser K (1985b) The onset of senescence is affected by DNA rearrangements of a discontinuous mitochondrial gene in Podospora anserina. Curr Genet 9:373–382

    PubMed  Google Scholar 

  • Kuiper MT, Lambowitz AM (1988) A novel reverse transcriptase activity associated with mitochondrial plasmids of Neurospora. Cell 55:693–704

    CAS  PubMed  Google Scholar 

  • Lambowitz AM (1989) Infectious introns. Cell 56:323–326

    CAS  PubMed  Google Scholar 

  • Lazarus CM, Künzel H (1981) Anatomy of amplified mitochondrial DNA in “Ragged” mutants oí Aspergillus amstelodami: excision points within protein genes and a common 215 bp segment containing a possible origin of replication. Curr Genet 4:99–107

    CAS  Google Scholar 

  • Lazarus CM, Earl AJ, Turner G, Künzel H (1980) Amplification of a mitochondrial DNA sequence in the cytoplasmatically inherited “Ragged” mutant of Aspergillus amstelodami. Eur J Biochem 106:633–641

    CAS  PubMed  Google Scholar 

  • Lott T, Clark J (1980) Plasmodial senescence in the acellu-lar slime mold Didymium iridis. Exp Cell Res 128: 455–458

    CAS  PubMed  Google Scholar 

  • Lott T, Gorman S, Clark J (1981) Superoxide dismutase in Didymium iridis: characterization and changes in activity during senescence and sporulation. Mech Ageing Dev 17:119–130

    CAS  PubMed  Google Scholar 

  • Marcou D (1961) Notion de longévité et nature cyto-plasmique du déterminant de la sénescence chez quelques champignons. Ann Sci Nat Bot 12:653–764

    Google Scholar 

  • Meinhardt F, Kempken F, Kämper J, Esser K (1990) Linear plasmids among eukaryotes: fundamentals and application. Curr Genet 17:89–95

    CAS  PubMed  Google Scholar 

  • Michel F, Lang BF (1985) Mitochondrial class II introns encode proteins related to the reverse transcriptases of retroviruses. Nature 316:641–643

    CAS  PubMed  Google Scholar 

  • Munkres KD (1990a) Genetical, developmental and thermal regulation of antioxidant enzymes in Neuro-spora. Free Radic Biol Med 9:23–28

    CAS  PubMed  Google Scholar 

  • Munkres KD (1990b) Pharmacogenetics of cyclic guanyl-ate, antioxidants, and antioxidant enzymes in Neurospora. Free Rad Biol Med, 9:29–38

    CAS  PubMed  Google Scholar 

  • Munkres KD, Furtek CA (1983) Selection of conidial longevity mutants of Neurospora crassa. Mech Ageing Dev 25:47–62

    Google Scholar 

  • Munkres KD, Minssen M (1976) Ageing of Neurospora crassa. I. Evidence for the free radical theory of ageing from studies of a natural death mutant. Mech Ageing Dev 5:79–98

    CAS  PubMed  Google Scholar 

  • Munkres KD, Rana R (1978) Ageing oí Neurospora crassa. VIL Accumulation of fluorescent pigment (lipofuscin) and inhibition of the accumulation by nordihydro-guaiaretic acid. Mech Ageing Dev 7:399–406

    CAS  PubMed  Google Scholar 

  • Myers CJ, Griffiths AJF, Bertrand H (1989) Linear kalilo DNA is a Neurospora mitochondrial plasmid that integrates into the mitochondrial DNA. Mol Gen Genet 220:113–120

    CAS  PubMed  Google Scholar 

  • Nations C, Allen RG, Farmer KJ, Toy PL, Sohal RS (1986) Superoxide dismutase activity during the plasmodial life cycle of Physarum polycephalum. Experientia 42:64–66

    CAS  Google Scholar 

  • Nations C, Allison VF, Aldrich HC, Allen RG (1989) Biological oxidation and mobilization of mitochondrial calcium during the differentiation of Physarum polycephalum. J Cell Physiol 140:311–316

    CAS  PubMed  Google Scholar 

  • Niagro FD, Mishra NC (1989) An ethidium bromide induced mutant of Neurospora crassa defective in mitochondrial DNA. Curr Genet 16:303–305

    CAS  PubMed  Google Scholar 

  • Niagro FD, Mishra NC (1990) Biochemical, genetic and ultrastructural defects in a mitochondrial mutant (ER-3) of Neurospora crassa with senescence phenotype. Mech Ageing Dev 55:15–37

    CAS  PubMed  Google Scholar 

  • Orgel LE (1963) The maintainance of the accuracy of protein synthesis and its relevance to aging. Proc Natl Acad Sci USA 49:517–521

    CAS  PubMed  Google Scholar 

  • Osiewacz HD, Esser K (1984) The mitochondrial plasmid of Podospora anserina: a mobile intron of a mitochondrial gene. Curr Genet 8:299–305

    CAS  Google Scholar 

  • Osiewacz HD, Hermanns J, Marcou D, Triffi M, Esser K (1989) Mitochondrial DNA rearrangements are correlated with delayed amplification of the mobile intron (plDNA) in a long-lived mutant of Podospora anserina. Mutat Res 219:9–15

    CAS  PubMed  Google Scholar 

  • Pall ML (1990) Very low ATP/ADP ratios with aging of the natural death senescence mutant of Neurospora crassa. Mech Ageing Dev 52:287–294

    CAS  PubMed  Google Scholar 

  • Pascoe GA, Reed DJ (1989) Cell calcium, vitamin E, and the thiol redox system in cytotoxicity. Free Radic Biol Med 6:209–224

    CAS  PubMed  Google Scholar 

  • Pearl R (1824) Studies in human biology. Williams and Wilkins, Baltimore

    Google Scholar 

  • Pearl R (1984) The rate of living. Alfred A Knopf, New York

    Google Scholar 

  • Picard-Bennoun M (1985) Introns, protein synthesis and aging. FEBS Lett 184:1–5

    CAS  PubMed  Google Scholar 

  • Richter C (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 85:6465–6467

    CAS  PubMed  Google Scholar 

  • Richter C (1992) Reactive oxygen and DNA damage in mitochondria. Mutat Res 275:249–255

    CAS  PubMed  Google Scholar 

  • Richter C, Frei B (1988) Ca2+ release from mitochondria induced by prooxidants. Free Radic Biol Med 4:365–375

    CAS  PubMed  Google Scholar 

  • Rizet G (1953) Surla longévité des souches de Podospora anserina. CR Acad Sci Paris 137:838–840

    Google Scholar 

  • Rusch HP (1980) Growth and differentiation in Physarum. In: Dove WH, Rusch HP (eds) Growth and differentiation in Physarum polycephalum. Princeton University Press, Princeton, NJ, pp 1–8

    Google Scholar 

  • Sagripanti J-L, Kraemer KH (1989) Site-specific oxidative DNA damage at polyguanosine produced by copper plus hydrogen peroxide. J Biol Chem 264:1729–1734

    CAS  PubMed  Google Scholar 

  • Sainsard-Chanet A, Begel O (1986) Transformation of yeast and Podospora: innocuity of senescence-specific DNAs. Mol Gen Genet 204:443–451

    CAS  Google Scholar 

  • Schneider EL (1987) Theories of aging: a perspective. In: Warner HR, Butler RN, Sprott RL, Schneider EL (eds) Modern biological theories of aging. Raven, New York, ppl-3

    Google Scholar 

  • Schreck R, Albermann K, Baeuerle PA (1992) Nuclear factor kB: an oxidative stress-response transcription factor of eukaryotic cells (a review). Free Radic Res Comms 17:221–237

    CAS  Google Scholar 

  • Schulte E, Kuck U, Esser K (1988) Extrachromosomal mutanis from Podospora anserina: permanent vegetative growth in spite of multiple recombination events in the mitochondrial genome. Mol Gen Genet 211:342–349

    CAS  Google Scholar 

  • Scidel-Rogol BL, King J, Bertrand H (1989) Unstable mitochondrial DNA in natural-death nuclear mutants of Neurospora crassa. Mol Cell Biol 9(10):4259–4264

    Google Scholar 

  • Silliker ME, Cummings DJ (1990a) Genetic and molecular analysis of a long-lived strain of Podospora anserina. Genetics 125:775–781

    CAS  PubMed  Google Scholar 

  • Silliker ME, Cummings DJ (1990b) A mitochondrial DNA rearrangement and three new mitochondrial plasmids from long-lived strains of Podospora anserina. Plasmid 24:37–44

    CAS  PubMed  Google Scholar 

  • Smith JR, Rubenstein I (1973a) The development of “senescence” in Podospora anserina. J Gen Microbiol 76:283–296

    Google Scholar 

  • Smith JR, Rubenstein I (1973b) Cytoplasmatic inheritance of the timing of “senescence” in Podospora anserina. J Gen Microbiol 76:297–304

    Google Scholar 

  • Smith ML, Bruhn JN, Anderson JB (1992) The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 356:428–431

    Google Scholar 

  • Sohal RS, Allen RG, Nations C (1986) Oxygen free radicals play a role in cellular differentiation: A hypothesis. Free Radic Biol Med 2:175–181

    CAS  Google Scholar 

  • Stahl U, Lemke PA, Tudzynski P, Kück U, Esser K (1978) Evidence for plasmid like DNA in a filamentous fungus, the ascomycete Podospora anserina. Mol Gen Genet 162:341–343

    CAS  PubMed  Google Scholar 

  • Stahl U, Kück U, Tudzynski P, Esser K (1980) Characterization and cloning of plasmid-like DNA of the ascomycete Podospora anserina, Mol Gen Genet 178: 639–646

    CAS  PubMed  Google Scholar 

  • Stahl U, Tudzynski P, Kück U, Esser K (1982) Replication and expession of a bacterial-mitochondrial hybrid plasmid in the fungus P. anserina. Proc Natl Acad Sci USA 79:3641–3645

    CAS  PubMed  Google Scholar 

  • Steinhilber W, Cummings DJ (1986) A DNA polymerase activity with characteristics of reverse transcriptase in Podospora anserina. Curr Genet 10:389–392

    CAS  PubMed  Google Scholar 

  • Thorsness PE (1992) Structural dynamics of the mitochondrial compartment. Mutat Res 275:237–241

    CAS  PubMed  Google Scholar 

  • Toledo I, Hansberg W (1990) Protein oxidation related to morphogenesis in Neurospora crassa. Exp Mycol 14: 184–189

    CAS  Google Scholar 

  • Toledo I, Noronha-Dutra AA, Hansberg W (1991) Loss of NAD (P)-reducing power and glutathione disulfide excretion at the start of induction of aerial growth in Neurospora crassa. J Bacteriol 173:3243–3249

    CAS  PubMed  Google Scholar 

  • Tudzynski P, Esser K (1979) Chromosomal and extra-chromosomal control of senescence in the ascomycete Podospora anserina. Mol Gen Genet 173:71–84

    CAS  PubMed  Google Scholar 

  • Tudzynski P, Stahl U, Esser K (1982) Development of an eukaryotic cloning system in Podospora anserina. I. Long-lived mutants as potential recipients. Curr Genet 6:219–222

    CAS  Google Scholar 

  • Turker MS, Cummings DJ (1987) Podospora anserina does not senescence when serially passaged in liquid culture. J Bacteriol 169:454–460

    CAS  PubMed  Google Scholar 

  • Turker MS, Domenico JM, Cummings DJ (1987a) A novel family of mitochondrial plasmids associated with longevity mutants of Podospora anserina. J Biol Chem 262: 2250–2255

    CAS  PubMed  Google Scholar 

  • Turker MS, Domenico JM, Cummings DJ (1987b) Excision-amplification of mitochondrial DNA during senescence in Podospora anserina. A potential role for a 11 base-pair consensus sequence in the excision process. J Mol Biol 198:171–185

    CAS  PubMed  Google Scholar 

  • Vierny C, Keller AM, Begel O, Belcour L (1982) A sequence of mitochondrial DNA is associated with the onset of senescence in a fungus. Nature 297:157–159

    CAS  PubMed  Google Scholar 

  • Warner HR, Butler RN, Sprott RL, Schneider EL (eds) (1987) Modern biological theories of aging. Raven, New York

    Google Scholar 

  • Wright RM, Horrum MA, Cummings DJ (1982) Are mitochondrial structural genes selectively amplified during senescence in Podospora anserina? Cell 29:505–515

    CAS  PubMed  Google Scholar 

  • Yang X, Griffiths AJF (1993) Plasmid diversity in senescent and nonsenescent strains of Neurospora. Mol Gen Genet 237:177–186

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marbach, K., Stahl, U. (1994). Senescence of Mycelia. In: Wessels, J.G.H., Meinhardt, F. (eds) Growth, Differentiation and Sexuality. The Mycota, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-11908-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-11908-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-11910-5

  • Online ISBN: 978-3-662-11908-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics