Skip to main content

Wafer Bonding for High-Performance Logic Applications

  • Chapter
Wafer Bonding

Part of the book series: Springer Series in MATERIALS SCIENCE ((SSMATERIALS,volume 75))

Abstract

Shrinking the metal-oxide-semiconductor field-effect transistor (MOSFET) beyond the 50 nm technology node requires innovations to circumvent barriers due to the fundamental physics that constrains the conventional MOSFET. These innovations generally fall into two categories: new materials and new devices. Figure 5.1 depicts one view of the possible path of technological progress starting from present day 100 nm feature size technology [1,2]. In many instances, these new materials and new devices require new fabrication processes to enable their use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wong H-SP (2002) Beyond the conventional transistor. IBM Journal of Research and Development 46: 133

    Article  Google Scholar 

  2. Wong H-SP (2002) Novel Device Technologies. In: Pai CS and Ishiuchi HL(eds) IEEE Sympososium on VLSI Technology. Short Course on “Key Technology Challenges for Sub-70 nm VLSI”

    Google Scholar 

  3. Pae S, Su T, Denton JP, Neudeck GW (1999) Multiple layers of silicon-on-insulator islands fabrication by selective epitaxial growth. IEEE Electron Device Letters 20: 194

    Article  ADS  Google Scholar 

  4. Kunio T, Oyama K, Hayashi Y, Morimoto M (1989) Three-dimensional ICs having four stacked active device layers. In: IEEE International Electron Devices Meeting (IEDM), p 837

    Google Scholar 

  5. Subramanian V, Saraswat K (1998) High-performance germanium-seeded laterally crystallized TFT’s for vertical device integration. IEEE Trans Electron Devices 45: 1934

    Article  ADS  Google Scholar 

  6. Chan VWC, Chan PCH (2001) Fabrication of gate-all-around transistors using metal-induced lateral crystallization. IEEE Electron Device Letters 22: 80

    Article  ADS  Google Scholar 

  7. Tong Q-Y, Gösele U (1999) Semiconductor Wafer Bonding Science and Technology. John Wiley

    Google Scholar 

  8. Yau LD (1974) A simple theory to predict the threshold voltage of short channel IGFET’s. Solid State Electronics 17: 1059–63

    Article  ADS  Google Scholar 

  9. Wong H-SP, Frank DJ, Solomon PM (1998) Device design considerations for double-gate, ground-plane, and single-gated ultra-thin SOI MOSFETs at the 25 nm channel length generation. IEEE International Electron Devices Meeting (IEDM), 407

    Google Scholar 

  10. Taur Y, Wann C, Frank DJ (1998) 25 nm CMOS design considerations. IEEE International Electron Devices Meeting (IEDM), p 789

    Google Scholar 

  11. Frank DJ, Dennard RH, Nowak E, Solomon PM, Taur Y, Wong H-SP (2001) Device scaling limits of Si MOSFETs and their application dependencies. Proceedings of the IEEE 89: 259

    Article  Google Scholar 

  12. Wong H-SP, Chan KK, Taur Y (1997) Self-aligned (top and bottom) double-gate MOSFET with a 25 nm thick silicon channel. IEEE International Electron Devices Meeting (IEDM), p 427

    Google Scholar 

  13. Tanaka T, Horie H, Ando S, Hijiya S (1991) Analysis of p+ poly Si double-gate thin-film SOI MOSFETs. In: International Electron Device Meeting Technical Digest, pp. 683–686

    Google Scholar 

  14. Tanaka T, Suzuki K, Horie H, Sugii T (1994) Ultrafast low-power operation of p+-n+ double-gate SOI MOSFETs. In: Sympos on VLSI Technology, IEEE, New York, pp I1–12

    Google Scholar 

  15. Wong H-S, Frank DJ, Taur Y, Stork J (1994) Design and performance considerations for sub-0.1 µm double-gate SOI MOSFETs. IEEE International Electron Devices Meeting (IEDM) p 747

    Google Scholar 

  16. Guarini KW, Solomon PM, Zhang Y, Chan KK, Jones EC, Cohen GM, Krasnoperova A, Ronay M, Dokumaci O, Bucchignano JJ, Cabral JrC, Lavoie C, Ku V, Boyd DC, Petrarca KS, Babich IV, Treichler J, Kozlowski PM, Newbury JS, D’Emic CP, Sicina R, Wong H-SP (2001) Triple-self-aligned, planar double-gate MOSFETs: Devices and circuits. In: IEEE International Electron Devices Meeting (IEDM), pp 425–428

    Google Scholar 

  17. Solomon PM, Guarini KW, Zhang Y, Chan KK, Jones EC, Cohen GM, Krasnoperova A, Ronay M, Dokumaci O, Hovel HJ, Bucchignano JJ, Cabral JC, Lavoie C, Ku V, Boyd DC, Petrarca KS, Yoon JH, Babich IV, Treichler J, Kozlowski PM, Newbury JS, D’Emic CP, Sicina RM, Benedict J, Wong H-SP (2003) Two gates are better than one (double-gate MOSFET process). IEEE Circuits and Devices Magazine 19: 48–62.

    Article  Google Scholar 

  18. Jones EC, leong M, Kanarsky T, Dokumaci O, Roy RA, Shi L, Furukawa T, Miller RJ, Wong H-SP (2001) High performance of planar double gate MOSFETs with thin backgate dielectrics. In: Device Research Conf Digest (Cat. No.01TH8561) IEEE Piscataway, NJ, USA, pp. 28–9

    Google Scholar 

  19. Cohen GM, Wong H-SP (2002) Self-aligned double-gate MOSFET by selective epitaxy and silicon wafer bonding techniques. US Patent 6,365, 465.

    Google Scholar 

  20. Cohen GM, Chan KK, Wong H-SP (2000) unpublished results

    Google Scholar 

  21. Lee J-H, Tarashi G, Wei A, Langdo T, Fitzgerald EA, Antoniadis D (1999) Super self-aligned double-gate ( SSDG) MOSFETs utilizing oxidation rate difference and selective epitaxy. IEEE International Electron Devices Meeting (IEDM) p 71

    Google Scholar 

  22. Weiser J, Hoyt J, Takagi S, Gibbons J (1994) Strain dependence of the performance enhancement in strained-Si n-MOSFETs. IEEE International Electron Devices Meeting (IEDM), pp 373–376

    Google Scholar 

  23. Rim K, Chu J, Chen H, Jenkins KA, Kanarsky T, Lee K, Mocuta A, Zhu H, Roy R, Newbury J, Ott J, Petrarca K, Mooney P, Lacey D, Koester S, Chan K, Boyd D, Leong M, Wong H-S (2002) Characteristics and device design of sub-100 nm strained Si nand pMOSFETs. In: Sympos on VLSI Technology (Cat. No.01CH37303). IEEE Piscataway, NJ, USA, pp 8–99

    Google Scholar 

  24. Shimizu A, Hachimine K, Ohki N, Ohta H, Koguchi M, Nonaka Y, Sato H, Ootsuka F (2001) Local Mechanical-Stress Control (LMC): A New Technique for CMOSPerformance Enhancement. In: IEEE International Electron Devices Meeting (IEDM), pp 433–436.

    Google Scholar 

  25. Tiwari S, Fischetti MV, Mooney PM, Weiser JJ (1997) Hole Mobility Improvement in Silicon-On-Insulator and Bulk Silicon Transistors Using Local Strain. In: IEEE International Electron Devices Meeting (IEDM), pp 939–941

    Google Scholar 

  26. Mizuno T, Sugiyama N, Kurobe A, Takagi S (2001) Advanced SOI p-MOSFETs with strained-Si channel on SiGe-on-insulator substrate fabricated by SIMOX technology. IEEE Trans Electron Devices 48: 1612–1618

    Google Scholar 

  27. Tezuka T, Sugimama N, Takagi S (2001) Fabrication of strained Si on an ultrathin SiGe-on-Insulator substrate with a high-Ge fraction. Appl Phys Lett 79: 1798–1800

    Article  ADS  Google Scholar 

  28. Huang L, Chu JO, Goma SA, D’Emic CP, Koester SJ, Canaperi DF, Mooney PM, Cordes SA, Speidell JL, Anderson RM, Wong H-SP (2002) Electron and hole mobility enhancement in strained SOI by wafer bonding. IEEE Trans. Electron Devices 49: 1566–1571

    Google Scholar 

  29. Cheng Z-Y, Currie M, Leitz C, Taraschi G, Fitzgerald E, Hoyt J, Antoniadis D (2001) Electron mobility enhancement in strained-Si n-MOSFETs fabricated on SiGe-onInsulator ( SGOI) substrates. IEEE Electron Device Lett 22: 321–323

    Google Scholar 

  30. Mooney P (1996) Strained relaxation and dislocations in SiGe/Si structures. Mat Sci Eng R17: 105–146

    Article  Google Scholar 

  31. Huang L-J, Chu J, Canaperi D, D’Emic C, Anderson R, Koester S, Wong H-SP (2001) SiGe-on-insulator prepared by wafer bonding and layer transfer for high-performance field-effect transistors. Appl Phys Lett 78: 1267–1269

    Article  ADS  Google Scholar 

  32. Data courtesy M. Horowitz, D. Harris, SPEC.

    Google Scholar 

  33. Agarwal V, Hrishikash MS, Keckler SW, Burger D (2000) Clock rate versus 1PC: The end of the road for conventional microarchitectures. Comput Architec News 28: 248259

    Google Scholar 

  34. Davis JA, Venkatesan R, Kaloyeros A, Beylansky M, Souri SJ, Banerjee K, Saraswat KC, Rahman A, Reif R, Meindl JD (2001) In: Interconnect limits on gigascale integration (GSI) in the 21st century. Proc IEEE 89: 305–324

    Google Scholar 

  35. Meindl JD, Venkatesan R, Davis JA, Joyner J, Naeemi A, Zarkesh-Ha P, Bakir M, Mule T, Kohl PA, Martin KP (2001) Interconnecting device opportunities for gigascale integration (GSI). In: IEDM Tech Dig, pp 525–528

    Google Scholar 

  36. Rahman A, Fan A, Reif R (2000) Comparison of key performance metrics in two-and three-dimensional integrated circuits. In: Proc IEEE Int Interconnect Conf, pp 18–20

    Google Scholar 

  37. Rahman A, Reif R (2001) Thermal analysis of three-dimensional (3-D) integrated circuits (ICs). In: Proc IEEE Int Interconnect Conference, pp 157–159

    Google Scholar 

  38. Liu CC, Zhang J, Datta AK, Tiwari S (2002) Heating effects of clock drivers on bulk, SOI, and 3DI CMOS. IEEE Electron Devices Lett 23: 716–18

    Article  ADS  Google Scholar 

  39. Al-sarawi SF, Abbott D, Franzon PD (1998) A review of 3-D packaging technology. IEEE Trans on Components, Packaging, and Manufacturing Technology — Part B, 21: 2–14

    Google Scholar 

  40. DeCaro RE, Totty JB, Hsu YW (1994) A low cost, compact “user” reconfigurable three-dimensional DSP MCM. Proc. 5th Int Conf Signal Processing Applied Technology, DSP Associates, Waltham, MA, USA, pp. 848–53

    Google Scholar 

  41. Segelken JM, Wu LJ, Lau MY, Tai KL, Shively RR, Grau TG (1992) Ultra-dense: An MCM-based 3-D digital signal processor. IEEE Trans Trans Compon Hybrids Manuf Technol 15: 438–443

    Article  Google Scholar 

  42. Terrill RE (1995) Aladdin: Packaging lessons learned. In: Proc. 1995 Int Conf Multichip Modules, (SPIE Vol. 2575 ) ISHM-Microelectron. Soc, Reston, VA, USA., pp 7–11

    Google Scholar 

  43. Crowley R (1993) Three-dimensional electronics packaging. Technical Report, Tech Search International, Inc., Austin, TX, p 41

    Google Scholar 

  44. Minahan JA, Pepe A, Some R, Suer M (1992) The 3-D stack in short form (memory chip packaging). In: Proc 42nd Electron Comp Technology Conf, (Cat. No.92CH30569). IEEE New York, NY, USA, pp. 340–4

    Google Scholar 

  45. Terrill R, Beene GL (1996) 3-D packaging technology overview and mass memory applications. In: Proc IEEE Aerosp Appl Conf, Aspen, CO 2, pp 347–355

    Google Scholar 

  46. Forthun J, Belady C (1992) 3-D memory for improved system performance. In: Proc Int Electron Packaging Conf, Int. Electron. Packaging Soc, Wheaton, IL, USA pp 667–677

    Google Scholar 

  47. Tuckerman DB, Bauer LO, Brathwaite NE, Demmin J, Flatow K, Hsu R, Kim P, Lin CM, Lin K, Nguyen S, Thipphavong V (1994) Laminated memory: A new 3dimensional packing technology for MCM’s. In: Proc. IEEE Multi-Chip Module Conf MCMC-94, IEEE Comput Soc Press, Santa Cruz, CA, pp 58–63

    Google Scholar 

  48. Gibbons JF, Lee KF (1980) One-gate-wide MOS inverter on laser-recrystallized polysilicon. IEEE Eleclectron Devices Lett 1: 117–118

    Article  Google Scholar 

  49. Colinge JP, Demoulin E, Loet M (1982) Stacked transistors CMOS ( ST-MOS) and nMOS technology modified to CMOS. IEEE Trans Eleclectron Devices 29: 585–589

    Google Scholar 

  50. Chen CE, Lam HW, Smlhi SDS, Pinizzotto RF (1983) Stacked CMOS SRAM cell. IEEE Eleclectron Devices Lett 4: 272–274

    Article  ADS  Google Scholar 

  51. Kawamura S, Sasaki N, Iwai T, Nakano M, Takagi M (1983) Three-dimensional CMOS ICs fabricated by using beam recrystallization. IEEE Eleclectron Devices Lett 4: 366–369

    Article  ADS  Google Scholar 

  52. Kunio T, Oyama K, Hayashi Y, Morimoto M (1989) Three-dimensional IC’s having four stacked active device layers. In: IEDM Tech Dig, pp 837–840

    Google Scholar 

  53. Subramanian V, Saraswat KC (1998) High-performance germanium-seeded laterally crystallizated TFT’s for vertical device integration. IEEE Trans Eleclectron Devices 45: 1934–1939

    Article  ADS  Google Scholar 

  54. Subramanian V, Toita M, Ibrahim NR, Souri SJ, Saraswat KC (1999) Low-leakage germanium-seeded laterally-crystallized single-grain 100 nm FT’s for vertical integration applications. IEEE Eleclectron Devices Lett 20: 341–343

    Article  ADS  Google Scholar 

  55. Lee SW, Joo SK (1996) Low temperature poly-Si thin-film transistor fabrication by metal-induced-lateral crystallization. IEEE Eleclectron Devices Lett 17: 160–162

    Article  ADS  Google Scholar 

  56. Wang H, Chan M, Jagar S, Wang Y, Ko PK (2000) Submicron super TFTs for 3-D VLSI applications. IEEE Eleclectron Devices Lett 21: 439–441

    Article  ADS  Google Scholar 

  57. Jagar S, Chan M, Poon MC, Wang H, Qin M, Ko PK, Wang Y (1999) Single grain thin-film-transistor (TFT) with SOI CMOS performance formed by metal-inducedlateral-crystallization. In: IEDM Tech Dig, pp 293–296

    Google Scholar 

  58. Chan VWC, Chan PCH, Chan M (2001) Multiple layers of CMOS integrated circuits using recrystallized silicon film. IEEE Eleclectron Devices Lett 22: 77–79

    Article  ADS  Google Scholar 

  59. Chan VWC, Chan PCH, Chan M (2001) Three-dimensional CMOS SOI integrated circuit using high-temperature metal-induced lateral crystallization. IEEE Trans Eleclectron Devices 48: 1394–1399

    Article  ADS  Google Scholar 

  60. Crowley M, Al-Shamma A, Bosch D, Farmwald M, Fasoli L, Ilkbahar A, Johnson M, Kleveland B, Lee T, Liu T, Nguyen Q, Scheuerlein, R, So K, Thorp T (2003) 512Mb PROM with 8 layers of Antifuse/Diode Cells. In: Digest of the International Solid State Circuits Conf (Cat. No.03CH37414) IEEE Piscataway, NJ, USA, pp 284–285.

    Google Scholar 

  61. Pae S, Su T, Denton JP, Neudeck GW (1999) Multiple layers of silicon-on-insulator islands fabrication by selective epitaxial growth. IEEE Eleclectron Devices Lett 20: 194–196

    Article  ADS  Google Scholar 

  62. Lasky (1986), Appl Phys Lett 48: 78

    Article  ADS  Google Scholar 

  63. Shimbo (1986), J Appl Phys 60: 2987

    Article  ADS  Google Scholar 

  64. Bower RW, Ismail MS, Farrens SN (1991), J Electronic Materials 20: 383–387

    Article  ADS  Google Scholar 

  65. Bruel M (1995) Silicon-on-insulator material technology. Elecron Lett 311: 1201

    Article  Google Scholar 

  66. Tong Q-Y, Gutjahr K, Hopfe S, Goesele U, Lee T-H (1997) Appl Phys Lett 70: 1390 1392

    Google Scholar 

  67. Xue L, Liu CC, Tiwari S (2001) Multi-layers with buried structures (MLBS): An approach to three-dimensional integration. In: Proc IEEE Int SOI Conf, pp 117–118

    Google Scholar 

  68. Xue L, Liu CC, Kim HS, Kim S, Tiwari S (2002) Three-dimensional integration: Technology, use, and issues for mixed-signal applications. IEEE Trans Electron Devices (submitted)

    Google Scholar 

  69. Maleville C, Barge T, Ghyselen B, Auberton AJ, Moriceau H, Cartier AM (2000) In: Multiple SOI layers by multiple Smart-Cut® transfers. Proc IEEE Int SOI Conf, pp 134–135

    Google Scholar 

  70. Colinge C, Roberds B, Doyle B (2001) Silicon layer transfer using wafer bonding and debonding. J Electronic Materials 30: 841–844

    Article  ADS  Google Scholar 

  71. Aspar B (1999) Electron Lett 35

    Google Scholar 

  72. Huang LJ, Chu JO, Goma S, D’Emic CP, Koester SJ, Canaperi DF, Mooney PM, Cordes SA, Speidell JL, Anderson RM, Wong HSP (2001) Carrier mobility enhancement in strained Si on insulator fabricated by wafer bonding. In: 2001 Sympos on VLSI Technology, Digest of Technical Papers, IEEE Piscataway, NJ, USA, pp 5758

    Google Scholar 

  73. Matsuo S, Nakahara T, Tateno K, Kurokawa T (1996) Novel technology for hybrid integration of photonic and electronic circuits. IEEE Photonics Tech Lett 8: 1507–1509

    Article  ADS  Google Scholar 

  74. Matsuo S, Kurokawa T (1996) VCSEL-based smart pixels. In: Digest IEEE/LEOS 1996 Summer Topical Meeting: Advanced Applications of Lasers and Materials and Processing 3–4

    Google Scholar 

  75. Matsuo S, Nakahara T, Tateno K, Tsuda H, Kurokawa T (1997) Hybrid integration of smart pixel with vertical-cavity surface-emitting laser using polyimide bonding. In: Proc Spatial Light Modulators, Topical Meeting, Opt Soc America Washington, DC, USA, OSA Trends in Optics and Photonics Series, Vol. 14, pp 39–46

    Google Scholar 

  76. Lindner P, Dragoi V, Glinsner T, Schaefer C, Islam R (2002) 3D interconnect through aligned wafer level bonding. In: Proc IEEE Electronic Components and Technology Conf

    Google Scholar 

  77. Ramm P, Bollmann D, Braun R, Buchner R, Cao-Minh U, Engelhardt M, Eiunann G, Grabl T, Hieber K, Hubner H, Kawala G, Kleiner M, Klumpp A, Kuhn S, Landesberger C, Lezec H, Muth W, Pamler W, Popp R, Renner E, Ruhl G, Sanger A, Scheler U, Schertel A, Schmidt C, Schwarzl S, Weber J, Weber W (1997) Three dimensional metallization for vertically integrated circuits. Microelectron Eng 37 /38: 39–47

    Article  Google Scholar 

  78. Bertagnolli E, Bollmann D, Braun R. Buchner R, Engelhardt M, Grabl T, Hieber K, Kawala G, Kleiner M, Klumpp A, Kuhn S, Landesberger C, Pamler W, Popp R, Ramm P, Renner E, Ruhl G, Sanger A, Scheler U, Schertel A, Schmidt C, Schwarzl S, Weber J (1997) Interchip via technology — Three dimensional metallization for vertically integrated circuits. In: Proc. 4th Int Sympos on Semiconductor Wafer Bonding, Electrochem Soc, Pennington, NJ, USA., pp 509–520

    Google Scholar 

  79. Burns J, Mcllrath L, Keast C, Lewis C, Loomis A, Warner K, Wyatt P (2001) Three-dimensional integrated circuits for low-power, high-bandwidth systems on a chip. In: Proc IEEE Int Solid-State Circuits Conf, pp 268–269

    Google Scholar 

  80. Burns J, Mcllrath L, Hopwood J, Keast C, Vu DP, Warner K, Wyatt P (2000) An SOI-based three-dimensional integrated circuit technology. In: Proc IEEE Int SOI Conf, pp 20–21

    Google Scholar 

  81. Guarini KW, Topol AW, leong M, Yu R, Shi L, Newport MR, Frank DJ, Singh DV, Cohen GM, Nitta SV, Boyd DC, O’Neil PA, Tempest SL, Pogge HB, Purushothaman S, Haensch WE (2002) Electrical integrity of state-of-the-art 0.13.tm SOI CMOS devices and circuits transferred for three-dimensional (3D) integrated circuit (IC) fabrication. Int Electron Devices Meeting. Technical Digest (Cat. No.02CH37358). IEEE Piscataway, NJ, USA, pp 943–5

    Google Scholar 

  82. Narayan C, Purushothaman S, Doany F, Deutsch A (1995) IEEE Trans Compon Hybrids Manuf Technol–Part B 18: 42–46

    Article  Google Scholar 

  83. Lu J-Q, Kwon Y, Kraft RP, Gutmann RJ, McDonald JF, Cale TS (2001) Stacked chipto-chip interconnections using wafer bonding technology with dielectric bonding glues. In: Proc IEEE Int Interconnect Technology Conf, pp 219–221

    Google Scholar 

  84. Gutmann RJ, Lu J-Q, Kwon Y, McDonald JF, Cale TS (2001) Three-dimensional (3D) ICs: A technology platform for integrated systems and opportunities for new polymeric adhesives. In: Proc IEEE Int Conf on Polymers and Adhesives in Microelectronics and Photonics, Germany, pp 173–180

    Google Scholar 

  85. Wong WS, Sands T, Cheung NW, Kneissl M, Bour DP, Mei P, Romano LT, Johnson NM (2000) In„Ga1_XN light emitting diodes on Si substrates fabricated by Pd—In metal bonding and laser lift-off. Appl Phys Lett 77: 2822–2824

    Article  ADS  Google Scholar 

  86. Kurino H, Lee KW, Nakamura T, Sakuma K, Park KT, Miyakawa N, Shimazutsu H, Kim KY, Inamura K, KOyanagi M (1999) Intelligent image sensor chip with three-dimensional structure. In: IEDM Tech Dig, pp 879–882

    Google Scholar 

  87. Lee KW, Nakamura T, Sakuma K, Park KT, Shimazutsu H, Miyakawa N, Kim KY, Kurino H, Koyanagi M (2000) Development of three-dimensional integration technology for highly parallel image-processing chip. Jpn J Appl Phys 1 39: 2473–2477

    Article  ADS  Google Scholar 

  88. Lee KW, Nakamura T, Ono T, Yamada Y, Mizukusa T, Hashimoto H, Park KT, Kurino H, Koyanagi M (2000) Three-dimensional shared memory fabricated using wafer stacking technology. In: IEDM Tech Dig, pp 165–168

    Google Scholar 

  89. Tsau CH, Schmidt MA, Spearing SM (2000) Characterization of low temperature, wafer-level gol-gold thermocompression bonds. In: Mater Res Soc Sympos Proc 605, pp 171–176

    Google Scholar 

  90. Fan A, Rahman A, Reif R (1999) Copper wafer bonding. Electrochem Solid State Lett 2: 534–536

    Article  Google Scholar 

  91. Reif R, Fan A, Chen K-N, Das S (2002) Fabrication technologies for three-dimensional integrated circuits. In: Proc IEEE Int Sympos on Quality Electronic Design, pp 33–37

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guarini, K.W., Wong, HS.P. (2004). Wafer Bonding for High-Performance Logic Applications. In: Alexe, M., Gösele, U. (eds) Wafer Bonding. Springer Series in MATERIALS SCIENCE, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10827-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10827-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05915-5

  • Online ISBN: 978-3-662-10827-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics