Skip to main content

High-Density Hybrid Integration of III–V Compound Optoelectronics with Silicon Integrated Circuits

  • Chapter
Wafer Bonding

Part of the book series: Springer Series in MATERIALS SCIENCE ((SSMATERIALS,volume 75))

  • 1080 Accesses

Abstract

High-density hybrid integration of III–V compound optoelectronics (0E) with Complementary Metal Oxide Semiconductor (CMOS) Integrated Circuits (ICs) is emerging as a technology able to provide the features and performance required by the next generation of high functionality information processing subsystems [1–3]. Though the performance potential of III–V OE is widely recognized, high-density co-integration with CMOS and low-cost manufacturability remain the key issues, which will ultimately determine the potential of this technology for market penetration. A variety of approaches is currently proposed to achieve the goal of high-density III–V 0E-CMOS integration. Since there is not a single prevalent technology for the embodiment of such high-density OE subsystems, a comprehensive presentation of the state-of-the-art hybrid integration technologies of III–V OEs with CMOS is necessary to assess the potential of each approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Krishnamoorthy AV, Miller DAB (1996) Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap. IEEE J of Selected Topics in Quantum Electronics 2: 55–76

    Article  Google Scholar 

  2. Miller DAB (1998) Dense two-dimensional integration of optoelectronics and electronics for interconnections. In: Husain A, Fallahi M (eds) Heterogeneous integration: Systems on a chip, Critical Reviews of Optical Engineering, Vol CR70, SPIE Optical Engineering Press, Bellingham, WA, pp 80–109

    Google Scholar 

  3. Jokerst NM, Brooke MA, Laskar J, Wills DS, Brown AS, Vrazel M, Jung S, Joo Y, Chang JJ (2000) Microsystem optoelectronic integration for mixed multisignal systems. IEEE J of Selected Topics in Quantum Electronics 6: 1231–1239

    Article  Google Scholar 

  4. Flipchip (2002) Internet site: www.flipchips.com

    Google Scholar 

  5. Pu R, Duan C, Wilmsen CW (1999) Hybrid integration of VCSELs to CMOS integrated circuits IEEE J. of Selected Topics in Quantum Electronics 5: 201–208

    Google Scholar 

  6. Krishnamoorthy AV, Goossen KW (1997) Progress in optoelectronic-VLSI smart pixel technology based on GaAs/AlGaAs MQW modulators. Int Journal of Optoelectronics 11: 181–198

    Google Scholar 

  7. Plant DV, Venditti MB, Laprise E, Faucher J, Ravazi K, Chateauneuf M, Kirk AG, Ahearn JS (2001) 256-channel bidirectional optical interconnect using VCSELs and photodiodes on CMOS IEEE J of Lightwave Technology 19: 1093–1103

    Google Scholar 

  8. Krishnamoorthy AV, Goossen KW (1998) Optoelectronic-VLSI: Photonics integrated with VLSI circuits. IEEE J of Selected Topics in Quantum Electronics 4: 899–912

    Google Scholar 

  9. Krishnamoorty AV, Goosen KW, Chirovsky LMF, Rozier RG, Chandramani P, Hobson WS, Hui SP, Lopata J, Walker JA, D’Asaro LA (2000) 16X16 VCSEL array flip-chip bonded to CMOS VLSI circuit. IEEE Photonic Technology Letters 12: 1073 1075

    Google Scholar 

  10. Andreou AG, Kalayjian ZK, Apsel A, Pouliquen PO, Athale RA, Simonis G, Reedy R (2001) Silicon on sapphire CMOS for optoelectronic microsystems. IEEE Circuits and Systems Magazine 1: 22–30

    Article  Google Scholar 

  11. Peregrine (2002) Internet site: www.peregrine-semi.com

    Google Scholar 

  12. Yablonovich E, Gmitter T, Harbison JP, Bhat R (1987) Extreme selectivity in the liftoff of epitaxial GaAs films. Applied Physics Letters, 51: 2222–2224.

    Google Scholar 

  13. Yablonovich E, Kapon E, Gmitter TJ, Yun CP, Bhat R, (1989) Double heterostructure GaAs/AlGaAs thin film diode lasers on glass substrates. IEEE Photonics Technology Letters 1: 41–42

    Article  ADS  Google Scholar 

  14. Maeda J, Sasaki Y, Dietz N, Shibahara K, Yokohama S, Miyazaki S, Hirose M, (1997) High-rate GaAs epitaxial lift-off technique for optoelectronic integrated circuits. Japan Journal of Applied Physics 36 (1 3B): 1554–1557.

    Article  ADS  Google Scholar 

  15. Jokerst NM, Brooke MA, Vendier O, Wilkinson S, Fike S, Lee M, Twyford E, Cross J, Buchanan B, Wills S (1996) Thin-film multimaterial optoelectronic integrated circuits. IEEE Transactions on Components, Packaging, and Manufacturing Technology Part B 19: 97–106

    Google Scholar 

  16. Camperi-Ginestet C, Hagris M, Jokerst N, Allen M (1991) Alignable epitaxial liftoff of GaAs materials with selective deposition using polyimide diaphragms. IEEE Photonics Technology Letters 3: 1123–1126

    Article  ADS  Google Scholar 

  17. Mathine DL (1997) The Integration of III—V Optoelectronics with Silicon Circuitry. IEEE J. of Selected Topics in Quantum Electronics 3: 952–959

    Article  Google Scholar 

  18. Mathine DL, Droopad R, Maracas GN (1997) A vertical-cavity surface-emitting laser appliqued to a 0.8 pm NMOS driver. IEEE Photonics Technology Letters 9: 869–871

    Article  ADS  Google Scholar 

  19. Wheeler CB, Mathine DL, Johnson SR, Maracas GN, Allee DR (1997) Selectively oxidized GaAs MESFET’s transferred to a Si substrate. IEEE Electron Device Letters 18: 138–140

    Article  ADS  Google Scholar 

  20. Marshall ED, Zhang B, Wang LC, Jiao PF, Chen WX, Sawada T, Lau SS, Kavanagh KL, Kuech TF (1987) Nonalloyed ohmic contacts to n-GaAs by solid-phase epitaxy of Ge. Journal of Applied Physics 62: 942–947

    Article  ADS  Google Scholar 

  21. Palmstrom CJ, Schwartz SA, Yablonovitch E, Pharbison J, Schwartz CL, Florez LT, Gmitter TJ, Marshall ED, Lau SS (1990) Ge redistribution in solid-phase Ge/Pd/GaAs ohmic contact formation. Journal of Applied Physics 67: 334–339

    Article  ADS  Google Scholar 

  22. Georgakilas A, Alexe M, Deligeorgis G, Cengher D, Aperathitis E, Androulidaki M, Gallis S, Hatzopoulos Z, Halkias G (2001) III—V material and device aspects for the monolithic integration of GaAs devices on Si using GaAs/Si low temperature wafer bonding. CAS 2001 Proceedings, IEEE, Piscataway, NJ, IEEE Catalog. No. 01TH8547, pp 239–244

    Google Scholar 

  23. Georgakilas A, Deligeorgis G, Aperathitis E, Cengher D, Hatzopoulos Z, Alexe M, Dragoi V, Gosele U, Kyriakis-Bitzaros ED, Minoglou K, Halkias G (2002) Wafer-scale integration of GaAs optoelectronic devices with standard Si integrated circuits using a low-temperature bonding procedure. Applied Physics Letters 81: 5099–5101

    Article  ADS  Google Scholar 

  24. Matsuo S, Nakahara T, Tateno K, Kurokawa T (1996) Novel technology for hybrid integration of photonic and electronic circuits. IEEE Photonics Technology Letters 8: 1507–1509

    Article  ADS  Google Scholar 

  25. Nakahara T, Tsuda H, Tateno K, Matsuo S, Kurokawa T (1999) Hybrid integration of smart pixels by using polyimide bonding: demonstration of a GaAs p-i-n photodiode/CMOS receiver. IEEE J. of Selected Topics in Quantum Electronics 5: 209–216

    Article  Google Scholar 

  26. Yeh HJJ, Smith JS, (1994) Fluidic self-assembly for the integration of GaAs light-emitting diodes an Si substrates. IEEE Photonics Technology Letters, 6: 706–708.

    Article  ADS  Google Scholar 

  27. Tu JK, Talghader JJ, Hadley MA, Smith JS, (1995) Fluidic self-assembly of InGaAs vertical cavity surface-emitting lasers onto silicon. IEE Electronics Letters 31: 14481449

    Google Scholar 

  28. Talghader JJ, Tu JK, Smith JS (1995) Integration of fluidically self-assembled optoelectronic devices using a silicon-based process. IEEE Photonics Technology Letters 7: 1321–1323

    Article  ADS  Google Scholar 

  29. Esener SC, Hartmann D, Heller MJ, Cable JM (1998) DNA-assisted micro-assembly: A heterogeneous integration technology for optoelectronics. In: Husain A, Fallahi M (eds) Heterogeneous integration: systems on a chip, Critical Reviews of Optical Engineering, Vol CR70, SPIE Optical Engineering Press, Bellingham, WA, pp 113–140

    Google Scholar 

  30. Edman CF, Swint RB, Gurtner C, Formosa RE, Roh SD, Lee KE, Swanson PD, Ackley DE, Coleman JJ, Heller MJ (2000) Electric field directed assembly of an InGaAs LED onto silicon circuitry. IEEE Photonics Technology Letters, 12: 1198–1200

    Article  ADS  Google Scholar 

  31. Fonstad CG (2001) Magnetically-assisted statistical assembly: A new heterogeneous integration technique. Proc of the Singapore-MIT Alliance Symposium. Internet document:http://web.mit. edu/sma/About/SpecialEvents/Symposium/A MMNS/M ASA.pdf

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kyriakis-Bitzaros, E.D., Halkias, G. (2004). High-Density Hybrid Integration of III–V Compound Optoelectronics with Silicon Integrated Circuits. In: Alexe, M., Gösele, U. (eds) Wafer Bonding. Springer Series in MATERIALS SCIENCE, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10827-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10827-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05915-5

  • Online ISBN: 978-3-662-10827-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics