Skip to main content

Additive-Tree Representations

  • Conference paper
Trees and Hierarchical Structures

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 84))

Abstract

Additive-trees are used to represent objects as “leaves” on a tree, so that the distance on the tree between two leaves reflects the similarity between the objects. Formally, an observed similarity δ is represented by a tree-distance d. As such, additive-trees belong to the descriptive multivariate statistic tradition. Additive-tree representations are useful in a wide variety of domains.

The author wishes to thank Sue Viscuso and Alice O’Toole for help and comments on previous draft.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdi, H. (1985) Représentations arborées de l’information verbatim. In J., Wittwer (Ed.): Psycholinguistique Textuelle. Paris: Bulletin de Psychologie.

    Google Scholar 

  • Abdi, H. (1986a) La mémoire sémantique, une fille de l’intelligence artificielle et de la psychologie. In C., Bonnet, J.C., Hoc, G., Tiberghien (Eds.): Psychologie, Intelligence Artificielle et Automatique. Bruxelles: Mardaga.

    Google Scholar 

  • Abdi, H. (1986b) Faces, prototypes, and additive tree representations. In H.D., Ellis, M.A., Jeeves, F., Newcombe, A., Young (Eds.): Aspects of Face Processing. Dordrecht: Nijhoff.

    Google Scholar 

  • Abdi., H. (1989a) ABD-TREE: A complete Apple 2 set of programs for additive-tree representations. In X. Luong (Ed.): Additive-Tree Representations of Textual Data. Nice: Cumfid (Special Issue).

    Google Scholar 

  • Abdi., H. (1989b) Additive-tree representations of verbatim memory. In X. Luong (Ed.): Additive-Tree Representations of Lexical Data. Nice: Cumfid (Special Issue).

    Google Scholar 

  • Abdi., H., Barthélemy, J.P., Luong, X. (1984)Tree representations of associative structures in semantic and episodic memory research. In E., Degreef, J. Van Huggenhaut (Eds.): Trends in Mathematical Psychology. New York: Elsevier.

    Google Scholar 

  • Bandelt, H.J., Dress, A. (1986) Reconstructing the shape of a tree from observed dissimilarity data. Advances in Applied Mathematics, 7, 309–43.

    Article  MathSciNet  MATH  Google Scholar 

  • Bandelt, H.J., Dress, A. (1988) Weak hierarchies associated with similarity measures. Unpublished manuscript. Bielefeld University.

    Google Scholar 

  • Barthélemy, J.P., Guénoche, A. (1988) Arbres et Représentations des Proximités. Paris: Masson.

    Google Scholar 

  • Barthélemy, J.P., Luong, X. (1986) Représentations arborées des mesures de dissimilarité. Statistiques et Analyse des Données, 5, 20–41.

    Google Scholar 

  • Barthélemy, J.P., Luong, X. (1987) Sur la topologie d’un arbre phylogénétique: aspects théoriques, algorithmes et applications à l’analyse des données textuelles. Mathématiques et Sciences Humaines, 100, 57–80.

    MATH  Google Scholar 

  • Bobisud, H.M., Bobisud, A. (1972) A metric for classification. Taxonomy, 21, 607–613.

    Article  Google Scholar 

  • Boesch, F.T. (1968) Properties of the distance matrix of a tree. Quaterly of Applied Mathematics, 16, 607–9.

    MathSciNet  Google Scholar 

  • Boorman, S.A., Olivier, D.C. (1973) Metrics on spaces of finite trees. Journal of Mathematical Psychology, 10, 26–59.

    Article  MathSciNet  MATH  Google Scholar 

  • Brossier, G. (1985) Approximation des dissimilarités par des arbres additifs. Mathématiques et Sciences Humaines, 91, 5–21.

    MathSciNet  MATH  Google Scholar 

  • Brossier, G., LeCalvé, G. (1986) Analyse des dissimilarités sous l’éclairage, application à la recherche d’arbres additifs optimaux. In D., Diday et al (Eds.): Data Analysis and Informatics, IV. Amsterdam: North Holland.

    Google Scholar 

  • Buneman, P. (1971)The recovery of trees from measures of dissimilarity. In J. Hodson et al (Eds.): Mathematics in the Archaelogical and Historical Sciences. Edinbhurg. Edinbhurg University Press.

    Google Scholar 

  • Buneman, P. (1974) A note on the metric properties of trees. Journal of Combinatorial Theory, 17, 48–50.

    Article  MathSciNet  MATH  Google Scholar 

  • Carroll, J.D., Arabie, P (1980) Multidimensional Scaling. Annual Review of Psychology, 31, 607–49.

    Article  Google Scholar 

  • Carroll, J.D., Chang, J.J. (1973) A method for fitting a class of hierarchical tree structure models to dissimilarity data and its application to some body parts data of Miller’s. In Proceedings of the 8I th Annual Convention of the American Psychological Association, 8, 1097–8.

    Google Scholar 

  • Carroll, J.D., Clark, L.A., Desarbo, W.S. (1984) The representation of three-way proximity data by single and multiple tree structure models. Journal of Classification, 1, 25–74.

    Article  MATH  Google Scholar 

  • Carroll, J.D., Pruzansky, S. (1975) Fitting of hierarchical tree structure models. Paper presented at the US-Japan seminar on Multidimensional Scaling. San-Diego.

    Google Scholar 

  • Cavalli-Sforza, L.L., Edwards, A.W.F. (1967) Philogenetic analysis models and estimation procedures. American Journal of Human Genetic, 19, 233–57.

    Google Scholar 

  • Chaiken, S., Dewdney, A.K., Slater, P.D. (1983) An optimal diagonal tree code. SIAM Journal of Applied Discrete Mathematics, 4, 424–9.

    MathSciNet  Google Scholar 

  • Colonius, H., Schulze, H.H. (1979) Reprâsentation nichnummerischer Ahlichkeitsdaten durch Baumstrukturen. Psychologische Beitrâge, 21, 98–111.

    Google Scholar 

  • Colonius, H., Schulze, H.H. (1981) Tree structuress for proximity data. British Journal of Mathematical and Statistical Psychology, 34, 167–80.

    Article  MathSciNet  MATH  Google Scholar 

  • Coombs, C.H. (1964) A Theory of Data. New York: Wiley.

    Google Scholar 

  • Corter, J.E., Tversky, A. (1986) Extended similarity trees. Psychometrika, 51, 429–451.

    Article  MATH  Google Scholar 

  • Coxon, A.P.M. (1982) The User’s Guide to Multidimensional Scaling. London: Heinemann.

    Google Scholar 

  • Culler, M. (1987) Group actions on R-trees. Proceedings of the London Mathematical Society, 55.

    Google Scholar 

  • Cunningham, J.P. (1974) Finding an optimal tree realization of a proximity matrix. Paper presented at the Mathematical Psychology Meeting: Ann Arbor.

    Google Scholar 

  • Cunningham, J.P. (1978) Free trees and bidirectional trees as representations of psychological distances. Journal of Mathematical Psychology, 17, 165–88.

    Article  MathSciNet  MATH  Google Scholar 

  • Day, W.H.E. (1985) Analysis of Quartet Dissimilarity Measures between Undirected Phylogenetic Trees. Research report ##CRM-1315. Department of Computer sciences, Montréal (Canada).

    Google Scholar 

  • De Soete, G. (1983a) Are non-metric additive tree representations of numerical proximity data meaningful? Quality and Quantity, 17, 475–8.

    Article  Google Scholar 

  • De Soete, G. (1983b) A least-square algorithm for fitting additive trees to proximity data. Psychometrika, 48, 621–6.

    Article  Google Scholar 

  • De Soete, G. (1984) Additive-tree representations of incomplete dissimilarity data. Quality and Quantity, 8, 387–97.

    Google Scholar 

  • Dewdney, A.K. (1979) Diagonal tree codes. Information and Control, 40, 234–9.

    Article  MathSciNet  MATH  Google Scholar 

  • Dobson, J. (1974)Unrooted tree for numerical taxonomy. Journal of applied Probability, 11, 32–42.

    Google Scholar 

  • Dress, A. (1984) Trees, tight extensions of metric spaces, and cohomological dimension of certain groups. Advances in Mathematics, 53, 321–402.

    Article  MathSciNet  MATH  Google Scholar 

  • Dress, A., Krüger M. (1987) Parsimonius phylogenetic trees in metric spaces and simulated annealing. Advances in Applied Mathematics,8 8–37:

    Google Scholar 

  • Eck, R.V., Dayhoff, M.O. (1966) Atlas of Protein Sequence and Structure. New York: National Biomedical Research Foundation.

    Google Scholar 

  • Estabrook, G.F., McMorris, F., Meacham, C. (1985) Comparison of undirected phylogenetic trees based on subtree of four evolutionary units. Systematic Zoology, 22, 193–200.

    Article  Google Scholar 

  • Farris, J.S. (1973) On comparing the shapes of taxonomic trees, Systematic Zoology, 2, 50–4.

    Article  Google Scholar 

  • Fitch, W.M. (1981) A non-sequential method for constructing trees and hierarchical classifications. Journal of Molecular Evolution, 18, 30–7.

    Article  Google Scholar 

  • Fumas, G.W. (1980)Objects and their Features: the Metric Representation of Two-Class Data. Thesis, Standford University.

    Google Scholar 

  • Gati, I., Tversky, A. (1984) Weighting common and distinctive features in perceptual and conceptual judgements. Cognitive Psychology, 16, 341–70.

    Article  Google Scholar 

  • Goldstein, A.G., Chance, J.E., Gilbert, B. (1984) Facial stereotypes of good guys and bad guys: a replication and extension. Memory and Cognition, 10, 549–52.

    Google Scholar 

  • Guénoche, A. (1987) Etude comparative de cinq algorithmes d’approximation des dissimilarités par des arbres à distance additives. Preprint to appear in: Mathématiques et Sciences Humaines

    Google Scholar 

  • Hodson, F.R., Kendall, D.G., Tautu, P. (Eds.) (1971) Mathematics in the Archaelogical and Historical Sciences. Edinbhurg: Edinbhurg University Press.

    Google Scholar 

  • Hakimi, S.L., Yau, S.S. (1964) Distance matrix of a graph and its realizibility. Quaterly of Applied Mathematics, 22, 305–17.

    MathSciNet  Google Scholar 

  • Hartigan, J.A. (1967) Representations of similarity matrices by trees. Journal of the American Statistical Association, 62, 1140–58.

    Article  MathSciNet  Google Scholar 

  • Hartigan, J.A. (1975) Clustering Algorithms. New York: Wiley.

    MATH  Google Scholar 

  • Henley, N.M. (1969) A psychological study of the semantics of animal terms. Journal of Verbal Learning and Verbal Behavior, 8, 176–84.

    Article  Google Scholar 

  • Krantz, D.H., Luce, R.D., Suppes, P., Tversky, A. (1971) Foundations of measurement. New York: Academic Press.

    MATH  Google Scholar 

  • Luce, R.D., Galanter, E. (1963) Psychophysical scaling. In R.D. Luce, R.R. Luce, E. Galanter (Eds.): Handbook of Mathematical Psychology. New York: Wiley.

    Google Scholar 

  • Luong, X. (1983) Voisinage Lâche, Score et Famille Scorante. Multigraph, Besancon (France).

    Google Scholar 

  • Luong, X. (1988) Méthodes en Analyse Arborée: Algorithmes et Applications. Thesis: Paris V University.

    Google Scholar 

  • McMorris, F.R. (1987) Axioms for consensus functions on undirected phylogenetic trees. Mathematical Biosciences, 74, 17–21.

    Article  MathSciNet  Google Scholar 

  • Meacham, C.A. (1981a) A manual method for character compatibility analysis. Taxon, 30, 591–600.

    Article  Google Scholar 

  • Meacham, C.A. (1981b) A probability measure for character compatibility, Mathematical Biosciences, 57, 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  • Osherson, D.N. (1987) New axioms for the contrast model of similarity. Journal of Mathematical Psychology, 31, 93–103.

    Article  MathSciNet  MATH  Google Scholar 

  • Patrinos, A.N., Hakimi, S.L. (1972) The distance matrix of a graph and its tree realization. Quaterly of Applied Mathematics, 30, 255–69.

    MathSciNet  MATH  Google Scholar 

  • Phipps, J.B. (1971) Dendogram Topology. Systematic Zoology, 20, 306–8.

    Article  Google Scholar 

  • Pruzansky, S., Tversky, A., Carroll, J.D. (1982)Spatial versus tree representations of proximity data. Psychometrika, 47, 3–24.

    Google Scholar 

  • Roberts, F.S. (1979) Measurement Theory. New York: Addison-Wesley.

    MATH  Google Scholar 

  • Robinson, D.F. (1971) Comparison of labeled trees of valency three. Journal of Combinatorial Theory (B Series), 11, 105–119.

    Article  Google Scholar 

  • Robinson, D.F., Foulds, L.R. (1981) Comparison of phyologenetic trees. Mathematical Biosciences, 53, 131–47.

    Article  MathSciNet  MATH  Google Scholar 

  • Rosch, E. (1973) On the internal structure of perceptual and semantic categories. In T.E., Moore (Ed.): Cognitive Development and the Acquisition of Language. New York: Academic Press.

    Google Scholar 

  • Rosch, E. (1975) Cognitive representations of semantic categories. Journal of Experimental Psychology: General, 104, 192–233.

    Article  Google Scholar 

  • Rosch, E. (1983) Prototype classification and logical classification: the two systems. In E.K. Scholnik (Ed.): New Trends in Conceptual Representations. Hillsdale: Eribaum.

    Google Scholar 

  • Roux, M. (1986) Représentation d’une dissimilarité par un arbre aux arêtes additives. In D. Diday et al (Eds.): Data Analysis and Informatics IV. Amsterdam: North Holland.

    Google Scholar 

  • Sattath, S. (1976) An equivalence theorem. Unpublished note, Hebrew University (Israel).

    Google Scholar 

  • Sattath, S., Tversky, A. (1977) Additive similarity trees. Psychometrika, 42, 319–45.

    Article  Google Scholar 

  • Shepard, R.N. (1974)Representation of structure in similarity data: problems and prospects. Psychometrika, 39, 373–421.

    Google Scholar 

  • Shepard, R.N. (1980) Multidimensional scaling, tree-fitting and clustering. Science, 210, 390–8.

    Article  MathSciNet  MATH  Google Scholar 

  • Shepard, R.N., Romney, A.K., Nerlove, S.B. (Eds.) (1974) Multidimensional Scaling (2 Vol.). New York: Academic Press.

    Google Scholar 

  • Simbes-Prereira, J.M.S. (1967)A note on the tree-realizability of a distance matrix. Journal of Combinatorial Theory, 6, 303–10.

    Google Scholar 

  • Smolenskii, Y.A. (1963) A method for linear recording of graphs. USSR Computional Mathematics and Mathematical Physics, 2, 396–7.

    Article  MathSciNet  Google Scholar 

  • Suppes, P.,Zinnes, J.L. (1963) Basic measurement theory. In R.D., Luce, R.R. Bush, E. Galanter (Eds.): Handbook of Mathematical Psychology. New York: Wiley.

    Google Scholar 

  • Turner, J., Kautz, W.H. (1970) A survey of progress in graph theory in the Soviet Union. SIAM Review, 12, 17.

    Article  MathSciNet  Google Scholar 

  • Tversky, A. (1977) Features of similarity. Psychological Review, 84, 327–52.

    Article  Google Scholar 

  • Tversky, A., Gati, I. (1978) Studies of similarity. In E. Rosch, B.B. Llyod (Eds.): Cognition and Categorization. Hillsdale: Eribaum.

    Google Scholar 

  • Tversky, A., Gati, I. (1982) Similarity, Separability and the triangle inequality. Psychological Review, 89, 123–54.

    Article  Google Scholar 

  • Waterman, M.S., Smith, T.F. (1978) On the similarity of dendrograms. Journal of Theoretical Biology, 73, 789–800.

    Article  MathSciNet  Google Scholar 

  • Waterman, M.S., Smith, T.F., Singh, M., Beyer, W.A. (1977) Additive evolutionary trees. Journal of theoretical Biology, 64, 199–213.

    Article  MathSciNet  Google Scholar 

  • Zaretskii, K. (1965) Constructing a tree on the basis of a set of distance between the hanging vertices (in Russian). Uspekhi Mat. Nauk., 20, 90–2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abdi, H. (1990). Additive-Tree Representations. In: Dress, A., von Haeseler, A. (eds) Trees and Hierarchical Structures. Lecture Notes in Biomathematics, vol 84. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10619-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10619-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52453-3

  • Online ISBN: 978-3-662-10619-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics