Skip to main content

4H-SiC Power-Switching Devices for Extreme-Environment Applications

  • Chapter
SiC Power Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 73))

Abstract

The behavior of 4H-SiC power diodes under radiation exposure and related issues are investigated and reviewed in this chapter. The fundamentals of power diodes and radiation are introduced. The DC performance of unterminated SiC junction barrier Schottky (JBS) diodes and Schottky barrier diodes (SBDs) under gamma radiation shows the significant tolerance of SiC diodes to gamma radiation exposure. The breakdown voltage increase after gamma radiation is ascribed to changes in the SiC/SiO2 interface. Investigation of SiC MOS capacitors confirmed this effect. NO passivation is shown to effectively improve the SiC/SiO2 interface and the interface charge density even after gamma irradiation. Both the DC and the AC performance of SiC JBS/SBDs under high-dose proton irradiation were also investigated. SiC JBS devices show a degradation of series resistance (R S) and improvements of reverse leakage current and blocking voltage after high-fluence proton exposure. The AC performance after proton irradiation shows that SiC JBS diodes are very effective in minimizing switching losses for high-power applications, even under high levels of radiation exposure, indicating superior radiation hardness for SiC switching diodes. We conclude that SiC power devices hold much promise for power-switching systems operating in a radiation environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. B.J. Baliga, Power Semiconductor Devices, Boston: PWS Publishing Co., 1995.

    Google Scholar 

  2. S. Seshadri, R. Dulloo, F. Ruddy, J. Seidel, and L. Rowland, “Demonstration of an SiC neutron detector for high-radiation environments”, IEEE Trans. Electron Devices 46, 567–571, 1999.

    Article  CAS  Google Scholar 

  3. J. McGarrity, F. Mclean, W. Delancey, J. Palmour, C. Carter, J. Edmond, and R. Oakley, “Silicon carbide JFET radiation response”, IEEE Trans. Nucl. Sci. 39, 1974–1981, 1992.

    Article  CAS  Google Scholar 

  4. T. Ohshima, M. Yoshikawa, H. Itoh, Y. Aoki, and I. Nashiyama, “gamma-Ray irradiation effects on 6H-SiC MOSFET”, Mater. Sci. Eng. B 6162, 480–484, 1999.

    Google Scholar 

  5. David C. Sheridan, Ph. D thesis, Electrical and Computer Engineering Department, Auburn University, 2000.

    Google Scholar 

  6. E.H. Rhoderick, R.H. Williams, “Metal-semiconductor contacts”, Oxford University Press, New York 1988.

    Google Scholar 

  7. E.G. Stassinopoulos and J.P. Raymond, “The space radiation environment for electronics”, Proc. IEEE 76, 1423–1442, 1988.

    Article  CAS  Google Scholar 

  8. E.A. Gutierrez, D.M.J. Deen, and C.L. Claeys, “Low Temperature Electronics”, Chap. 4, Academic Press, San Diego 2001.

    Google Scholar 

  9. K.J. Schoen, J.M. Woodall, J.A. Cooper Jr., and M.R. Melloch, “Design considerations and experimental analysis of high-voltage SiC Schottky barrier rectifiers”, IEEE Trans. Electron Dev. 45, 1595–1604, 1998.

    Article  CAS  Google Scholar 

  10. Q. Wahab, T. Kimoto, A. Ellison, C. Hallin, M. Tuominen, R. Yakimova, A. Henry, J.P. Bergman, and E. Janzen, “A 3 kV Schottky barrier diode in 4H-SiC”, Appl. Phys. Lett. 72, 445–447, 1998.

    Article  CAS  Google Scholar 

  11. D. Alok, B.J. Baliga, “SiC device edge termination using finite area argon implantation”, IEEE Trans. Electron Dev. 44, 1013–1017, 1997.

    Article  CAS  Google Scholar 

  12. S. Ortolland, M.L. Locatelli, D. Planson, J.P. Chante, and A. Senes, “Comparison between aluminum and boron-doped junction termination extensions for high voltage 6H-SiC planar bipolar diodes”, Mater. Sci. Forum 264268, 1045–1048, 1998.

    Google Scholar 

  13. D. Peters, R. Schorner, K.H. Holzlein, and P. Friedrichs, “Planar aluminum-implanted 1400 V 4H-silicon carbice p—n diodes with low on resistance”, Appl. Phys. Lett. 71, 2996–2997, 1997.

    Article  CAS  Google Scholar 

  14. M.S. Adler, V.A.K. Temple, A.P. Ferro, R.C. Rustay, “Theory and breakdown voltage for planar devices with a single field limiting ring”, IEEE Trans. Electron Dev. 24, 107–113, 1977.

    Article  Google Scholar 

  15. D.C. Sheridan, G. Niu, J.N. Merrett, J.D. Cressler, C. Ellis, and C.-C. Tin, “Design and fabrication of planar guard ring termination for high-voltage SiC diodes”, Solid State Electron. 44, 1367–1372, 2000.

    Article  CAS  Google Scholar 

  16. MEDICI 2-D semi. device simulator, Avant! Corp., Palo Alto, CA, 1999.

    Google Scholar 

  17. D.C. Sheridan, G. Chung, S. Clark, and J.D. Cressler, “The effects of high-dose gamma irradiation on high-voltage 4H-SiC Schottky diodes and the SiC—SiO2 interface”, IEEE Trans. Nucl. Sci. 48, 2229–2232, 2001.

    Article  CAS  Google Scholar 

  18. R. Stengl and E. Falck, “Surface breakdown and stability of high-voltage planar junctions”, IEEE Trans. Electron Dev. 38, 2181–2188, 1991.

    Article  Google Scholar 

  19. B.J. Baliga, “High voltage silicon carbide devices.” Mater. Res. Soc. Symp. Proc. 512, Wide-Bandgap Semiconductors for High Power, High Frequency and High Temperature, eds. S. DenBaars, J. Palmour, M. Shur, and M. Spencer, 77–89, 1998.

    Google Scholar 

  20. D.K. Schroder, Semiconductor Material and Device Characterization. London: Wiley, 1998.

    Google Scholar 

  21. H. Yano, T. Kimoto, H. Matsunami, M. Bassler, and G. Pensl, “MOSFET performance of 4H-, 6H-, and 15R-SiC processed by dry and wet oxidation”, Mater. Sci. Forum 338342, 1109–1112, 2000.

    Google Scholar 

  22. H.F. Li, S. Dimitrijev, D. Sweatman, and H.B. Harrison, “Effect of NO annealing conditions on electrical characteristics of n-type 4H-SiC MOS capacitors”, J. Electron. Mater. 29, 1027, 2000.

    Article  CAS  Google Scholar 

  23. G.Y. Chung, C.C. Tin, J.R. Williams, K. McDonald, M. Di Ventra, S.T. Pantelides, “Effect of nitric oxide annealing on the interface trap densities near the band edges in the 4H polytype of silicon carbide”, Appl. Phys. Lett. 76, 1713–1715, 2000.

    Article  CAS  Google Scholar 

  24. G.Y. Chung, C.C. Tin, J.R. Williams, K. McDonald, P.K. Chanana, R.A. Weller, S.T. Pantelides, L.C. Feldman, O.W. Holland, M.K. Das, and J.W. Palmour, “Improved inversion channel mobility for 4H-SiC MOSFETs following high temperature anneals in nitric oxide”, IEEE Electron Dev. Lett. 22, 176–178, 2001.

    Article  CAS  Google Scholar 

  25. T.B. Chen, Z.Y. Luo, J.D. Cressler, T.F. Isaacs-Smith, J.R. Williams, G.Y. Chung, and S. Clark, “The effects of NO passivation on the radiation response of SiO2/4H-SiC MOS capacitors”, Solid State Electron. 46, 2231–2235, 2002.

    Article  CAS  Google Scholar 

  26. Z. Shaneld, G.A. Brown, A.G. Revesz, H.L. Hughes, “A new MOS radiation-induced charge: negative fixed interface charge”, IEEE Trans. Nucl. Sci. 39, 303–307, 1992.

    Article  Google Scholar 

  27. F.T. Brady, J.T. Chu, S.S. Li, and W. Krull, “A study of the effects of processing on the response of implanted buried oxides to total dose irradiation”, IEEE Trans. Nucl. Sci. 37, 1995–2000, 1990.

    Article  CAS  Google Scholar 

  28. D.C. Look and J.R. Sizelove, “Defect production in electron-irradiated n-type GaAs”, J. Appl. Phys. 62, 3660–3664, 1987.

    Article  CAS  Google Scholar 

  29. A.M. Strel’chuk, A.A. Lebedev, V.V. Kozlovski, N.S. Savkina, D.V. Davydov, V.V. Solov’ev, and M.G. Rastegaeva, “Doping of 6H-SiC pn structures by proton irradiation”, Nucl. Instrum. Methods B 147, 74–78, 1998.

    Article  Google Scholar 

  30. http://www.diodes.com/datasheets/ds25002.pdf

    Google Scholar 

  31. W.A. Doolittle, A. Rohatgi, R. Ahrenkiel, D. Levi, G. Augustine, and R.H. Hopkins, “Understanding the role of defects in limiting the minority carrier lifetime in SiC”, Mater. Res. Soc. Symp. Proc. 483, Power Semiconductor Materials and Devices, eds. S.J. Pearton, R.J. Shul, E. Wolfgang, F. Ren, S. Tenconi, 197–202 (1997).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Luo, Z., Chen, T., Sheridan, D.C., Cressler, J.D. (2004). 4H-SiC Power-Switching Devices for Extreme-Environment Applications. In: Feng, Z.C. (eds) SiC Power Materials. Springer Series in Materials Science, vol 73. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09877-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09877-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05845-5

  • Online ISBN: 978-3-662-09877-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics