Skip to main content

Parasite Antigens, Their Role in Protection, Diagnosis and Escape: The Leishmaniases

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 120))

Abstract

The leishmaniases comprise a group of diseases of major and increasing public health importance (WHO Technical Report 701, 1984). The genus consists of many species which are epidemiologically diverse and complex. Nevertheless, all leishmanias are transmitted by sandfly vectors, either of the genus Phlebotomus (Old World) or Lutzomyia (New World), and they are all obligate intracellular parasites in their vertebrate hosts where they are found within macrophage phagolysomes (Alexander and Vickerman 1975; Chang and Dwyer 1976). Although the forms found infecting macrophages, amastigotes, are for the most part morphologically identical, the diseases produced in man display widely different clinical manifestations. This depends primarily on the species of parasite initiating the infection, but also in part on the general state of health or age, and more particularly, the genetic make-up of the host (Blackwell and Alexander 1985). The major disease-causing species of Leishmania in man are summarised in Table 1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams DO, Hamilton TA (1984) The cell biology of macrophage activation. Ann Rev Immunol 2:238–318

    Google Scholar 

  • Adler S (1964) Leishmania. Adv Parasit 2:35–96

    CAS  Google Scholar 

  • Adler S, Theodor O (1931) Investigations on Mediterranean kala-azar I–V. Proc Roy Soc Lond 125 B: 491–519

    Google Scholar 

  • Aikawa M, Hendricks LD, Ito Y, Jagusiak M (1982) Interactions between macrophage-like cells and Leishmania braziliensis in vitro. Am J Pathol 108:50–59

    PubMed  CAS  Google Scholar 

  • Alexander J (1981a) Leishmania mexicana: inhibition and stimulation of phagosome-lysosome fusion in infected macrophages. Exp Parasit 52:261–270

    PubMed  CAS  Google Scholar 

  • Alexander J (1981b) Interaction of Leishmania mexicana mexicana with mouse macrophages in vitro. In: Forster O, Landry M (eds) Heterogeneity of Mononuclear Phagocytes. Academic, New York, pp 447–454

    Google Scholar 

  • Alexander J (1982) A radio-attenuated Leishmania major vaccine markedly increases the resistance of CBA mice to subsequent infection with Leishmania mexicana mexicana. Trans Roy Soc Trop Med Hyg 76:646–649

    PubMed  CAS  Google Scholar 

  • Alexander J, Blackwell JM (1985) The immunological significance of genetically determined cross-reactivity between taxonomically distinct Leishmania species. Annales de Parasitologic (in press)

    Google Scholar 

  • Alexander J, Burns RG (1983) Differential inhibition by erythro-9-[3-(2-hydroxynonyl)] adenine of flagella-like and cilia-like movement of Leishmania promastigotes. Nature 305:313–315

    PubMed  CAS  Google Scholar 

  • Alexander J, Phillips RS (1978) Leishmania tropica and Leishmania mexicana mexicana: cross-immunity in mice. Exp Parasit 45:93–100

    PubMed  CAS  Google Scholar 

  • Alexander J, Vickerman K (1975) Fusion of host cell secondary lysosomes with the parasitophorous vacuoles of Leishmania mexicana-infected macrophages. J. Protozool. 22:502–508

    PubMed  CAS  Google Scholar 

  • Alving CR, Steck EA (1979) The use of liposome-encapsulated drugs in leishmaniasis. Trends Biochem Sci 4:175–177

    Google Scholar 

  • Al-Taqi M, Evans DA (1978) Characterisation of Leishmania spp. from Kuwait by isoenzyme electrophoresis. Trans Roy Soc Trop Med Hyg 72:56–65

    PubMed  CAS  Google Scholar 

  • Anderson S, David JR, McMahon-Pratt D (1983) In vivo protection against Leishmania mexicana mediated by monoclonal antibodies. J Immunol 131:1616–1618

    PubMed  CAS  Google Scholar 

  • Arnot DE, Barker DC (1981) Biochemical identification of cutaneous leishmanias is by analysis of kinetoplast DNA: II. Sequence homologies in Leishmania k DNA. Mol Biochem Parasit 3:47–56

    CAS  Google Scholar 

  • Barker BC, Butcher J (1983) The use of DNA probes in the identification of leishmanias: descrimation between isolates of the mexicana and braziliensis complexes. Trans Roy Soc Trop Med Hyg 77:285–298

    PubMed  CAS  Google Scholar 

  • Berman JD, Fioretti TB, Dwyer DM (1981) In vivo and in vitro localization of Leishmania within macrophage phago-lysomes: use of colloidel gold as a lysosomal label. J Protozool 28:239–242

    PubMed  CAS  Google Scholar 

  • Blackwell JM, Alexander J (1983) The macrophage and parasitic protozoa. Trans Roy Soc Trop Med Hyg 77:636–645

    PubMed  CAS  Google Scholar 

  • Blackwell JM, Alexander J (1985) Different host genes recognise and control infection with taxonomically distinct Leishmania species. Annales de Parasitologic (in press)

    Google Scholar 

  • Blackwell JM, Ezekowitz RAB, Roberts MB, Channon JY, Sim RB, Gordon S (1985) Macrophage complement and lectin-like receptors blind Leishmania in the absence of serum. J Exp Med 162:324–331

    PubMed  CAS  Google Scholar 

  • Blackwell JM, Freeman JC, Bradley DJ (1980) Influence of H-2 complex on acquired resistance to Leishmania donovani infection in mice. Nature 283:72–74

    PubMed  CAS  Google Scholar 

  • Bradley DJ, Taylor BA, Blackwell JM, Evans EP, Freeman J (1979) Regulation of Leishmania populations within the host: III. Mapping of the locus controlling susceptibility to visceral leishmaniasis in the mouse. Clin Exp Immunol 37:7–14

    PubMed  CAS  Google Scholar 

  • Bray RS (1983a) Leishmania: chemotactic responses of promastigotes and macrophages in vitro. J Protozool 30:322–329

    PubMed  CAS  Google Scholar 

  • Bray RS (1983b) Leishmania mexicana mexicana: attachment and uptake of promastigotes to and by macrophages in vitro. J Protozool 30:314–322

    PubMed  CAS  Google Scholar 

  • Bryceson ADM, Preston PM, Bray RS, Dumonde DC (1972) Experimental cutaneous leishmaniasis: II. Effects of immunosuppression and antigenic competition on the course of infection with Leishmania enriettii in the guinea pig. Clin Exp Immunol 10:305–335

    PubMed  CAS  Google Scholar 

  • Chance HL, Peters W, Schchory L (1974) Biochemical taxonomy of Leishmania: I. Observations of DNA. Ann Trop Med Parasit 68:307–316

    PubMed  CAS  Google Scholar 

  • Chang KP (1981) Leishmania donovani — macrophage binding mediated by surface glycoproteins/antigens. Mol Biochem Parasitol 4:67–76

    PubMed  CAS  Google Scholar 

  • Chang KP, Dwyer DM (1976) Multiplication of a human parasite (Leishmania donovani) in phagolysosomes of hamster macrophages in vitro. Science 193:678–680

    PubMed  CAS  Google Scholar 

  • Chang KP, Dwyer DM (1978) Leishmania donovani — hamster macrophage interaction in vitro: cell entry, intracellular survival and multiplication of amastigotes. J Exp Med 147:515–530

    PubMed  CAS  Google Scholar 

  • Channon JY, Roberts MB, Blackwell JM (1984) A study of the differential respiratory burst activity elicited by promastigotes and amastigotes of Leishmania donovani in murine resident peritoneal macrophages. Immunol 53:345–355

    CAS  Google Scholar 

  • Coombs GH (1982) Proteinases of Leishmania mexicana and other flagellate protozoa. Parasit 84:149–155

    CAS  Google Scholar 

  • Crocker PR, Blackwell JM, Bradley DJ (1984) Expression of the natural resistance gene Lsh in resident liver macrophages. Infect Immun 43:1033–1040

    PubMed  CAS  Google Scholar 

  • Dawidocwiz K, Kernandez AG, Infante RB (1975) The surface membrane of Leishmania: I. Effects of lectins on different stages of Leishmania braziliensis. J Parasitol 61:950–953

    Google Scholar 

  • Delbarra AAL, Howard JG, Snary D (1982) Monoclonal antibodies to Leishmania tropica major: specificities and antigen location. Parasitol 85:523–531

    Google Scholar 

  • Dwyer DM (1974) Lectin-binding saccharides on a parasitic protozoan. Science 184:471–473

    PubMed  CAS  Google Scholar 

  • Dwyer DM (1978) Leishmania — host cell membrane cycling in vitro. J Protozool 25:28A

    Google Scholar 

  • Dwyer DM, Gottlieb M (1983) The surface membrane chemistry of Leishmania: its possible role in parasite sequestration and survival. J Cell Biochem 23:35–45

    PubMed  CAS  Google Scholar 

  • El-On J, Bradley DJ, Freeman JC (1980) Leishmania donovani: action of excreted factor on hydrolytic enzyme activity of macrophages from mice with genetically different resistance to infection. Exp Parasit 49:167–174

    PubMed  CAS  Google Scholar 

  • Etges RJ, Bouvier J, Hoffman R, Bordier C (1985) Evidence that the major surface proteins of three Leishmania species are structurally related. Mol Biochem Parasitol 14:141–149

    PubMed  CAS  Google Scholar 

  • Ezekowitz RAB, Sim RB, Hill M, Gordon S (1984) Local opsonization by secreted macrophage complement components: role of receptors for complement in uptake of zymosan. J Exp Med 159:244–260

    PubMed  CAS  Google Scholar 

  • Farah FS, Samra SA, Nuwayri-Salti (1975) The role of macrophage in cutaneous leishmaniasis. Immunol 29:755–764

    CAS  Google Scholar 

  • Feng LC, Chung HL (1941) Experiments on the transmission of kala-azar from dogs to hamsters by Chinese sandflies. Chinese Med J 60:489–496

    Google Scholar 

  • Fong D, Chang KP (1982) Surface antigenic change during differentiation of a parasitic protozoan, Leishmania mexicana: identification of monoclonal antibodies. Proc Nat Acad Sci USA 79:7366–7370

    PubMed  CAS  Google Scholar 

  • Franke ED, McGreevy PB, Katz SP, Sacks DL (1985) Growth cycle-dependent generation of complement resistant Leishmania promastigotes. J Immunol 134:2713–2718

    PubMed  CAS  Google Scholar 

  • Gardener PJ, Chance ML, Peters W (1974) Biochemical taxonomy of Leishmania: II. Electrophoretic variation of malate dehydrogenase. Ann Trop Med Parasit 68:317–328

    PubMed  CAS  Google Scholar 

  • Gardiner PR, Dwyer DM (1983) Radioiodination and identification of externally disposed membrane components of Leishmania tropica. Mol Biochem Parasitol 8:283–295

    PubMed  CAS  Google Scholar 

  • Gardiner PR, Jaffe CL, Dwyer DM (1984) Identification of cross-reactive promastigote cell surface antigens of some leishmanial stocks by 125I-labelling and immunoprecipitation. Inf Immun 43:637–643

    CAS  Google Scholar 

  • Garnham PCC, Humphrey JH (1969) Problems in Leishmaniasis related to immunology. Current Topics Microbiol Immun 48:29–42

    CAS  Google Scholar 

  • Glew RH, Czuczman MS, Diven WF, Berens RL, Pope MT, Katsoulis DE (1982) Partial purification and characterization of particulate acid phosphatase of Leishmania donovani promastigotes. Comp Biochem Physiol 72B:581–590

    CAS  Google Scholar 

  • Gorczinski RM, MacRae S (1981) Analysis of subpopulations of glass-adherent mouse skin cells controlling resistance/susceptibility of infection with Leishmania tropica and correlation with the development of independent proliferative signals to Lyt-1+/Lyt-2+ T lymphocytes. Cell Immun 67:74–89

    Google Scholar 

  • Gottlieb M, Dwyer DM (1981) Leishmania donovani surface membrane acid phosphatase activity of promastigotes. Exp Parasitol 52:117–128

    PubMed  CAS  Google Scholar 

  • Greenblatt CL (1980) The present and future of vaccination for cutaneous leishmaniasis. In: Mizrahi A, Hertman I, Klingberg MA, Kohn A (eds) New Developments with Human Vaccines. Alan R. Liss, New York, pp 259–285

    Google Scholar 

  • Griffin FM, Griffin JA, Leider JW, Silverstein SD (1975) Studies on the mechanism of phagocytosis: I. Requirements for circumferential attachment of particle-bound ligands to specific receptors on the macrophage plasma membrane. J Exp Med 142:1263–1282

    PubMed  Google Scholar 

  • Handman E, Ceredig R, Mitchell GG (1979) Murine cutaneous leishmaniasis: Disease patterns in intact and nude mice of various genotypes and examination of some differences between normal and infected macrophages. Aus J Exp Biol Med Sci 57:9–29

    CAS  Google Scholar 

  • Handman E, Curtis JM (1982) Leishmania tropica: surface antigens of intracellular and flagellate forms. Exp Parasit 54:243–249

    PubMed  CAS  Google Scholar 

  • Handman E, Greenblatt CL, Goding JW (1984) An amphipathic sulphated glycoconjugate of Leishmania characterization with monoclonal antibodies. EMBO J 3:1206–2301

    Google Scholar 

  • Handman E, Goding JW (1985) The Leishmania receptor for macrophages is a lipid-containing glycoconjugate. EMBO J 4:329–336

    PubMed  CAS  Google Scholar 

  • Handman E, Hocking RE (1982) Stage-specific, strain-specific and cross-reactive antigens of Leishmania species identified by monoclonal antibodies. Inf Immun 37:28–37

    CAS  Google Scholar 

  • Handman E, Mitchell GF, Goding JW (1981) Identification and characterization of protein antigens of Leishmania tropica isolates. J Immunol 126:508–512

    PubMed  CAS  Google Scholar 

  • Herman R (1980) Cytophilic and opsonic antibodies in visceral leishmaniasis. Infect Immun 28:585–593

    PubMed  CAS  Google Scholar 

  • Hernandez AG (1982) Lectins as a tool in parasite research. In: Chance ML, Walton BC (eds) Biochemial Characterization of Leishmania. UNDP/WORLD BANK/WHO, Geneva pp 181–196

    Google Scholar 

  • Hernandez AG (1983) In: Cytopathology of Parasitic Disease, UBA Foundation Symposium 99. Pitman, London, pp 138–156

    Google Scholar 

  • Hochmeyer WT, Walters D, Gore RW, Williams JS, Fortier AH, Nacy CA (1984) Intracellular destruction of Leishmania donovani and Leishmania tropica amastigotes by activated macrophages: dissociation of these microbicidal effector activities in vitro. J Immunol 132:3120–3125

    Google Scholar 

  • Howard JG, Hale C, Chan Liew WL (1980) Immunological regulation of experimental cutaneous leishmaniasis: I. Immunogenetic aspects of susceptibility to Leishmania tropica in mice. Parasite Immunol 2:303–314

    PubMed  CAS  Google Scholar 

  • Howard JG, Nicklin S, Hale C, Liew FY (1982) Prophylactic immunization against experimental leishmaniasis: I. Protection induced in mice genetically vulnerable to fatal Leishmania tropica infection. J Immunol 129:2206–2210

    PubMed  CAS  Google Scholar 

  • Jaffe CL, Bennet E, Grimaldi G, McMahon-Pratt D (1984) Production and characterization of species-specific monoclonal antibodies against Leishmania donovani for immunodiagnosis. J Immunol 133:440–447

    PubMed  CAS  Google Scholar 

  • Jaffe CL, McMahon-Pratt D (1983) Monoclonal antibodies specific for L. tropica: I. Characterization of antigens associated with stage- and species-specific determinants. J Immunol 131:1987–1993

    PubMed  CAS  Google Scholar 

  • Kaneshiro ES, Gottlieb M, Dwyer DM (1982) Cell surface origin of antigens shed by Leishmania donovani during growth in axenic culture. Inf Immun 37:558–567

    CAS  Google Scholar 

  • Killick-Kendrick R (1979) Biology of Leishmania in phlebotomine sandflies. In: Lumsden WHR, Evans DA (eds) Biology of the Kinetoplastida, vol 2. Academic, London, pp 395–460

    Google Scholar 

  • Killick-Kendrick R, Molyneux DH, Ashford RW (1974) Leishmania in phlebotomid sandflies: I. Modifications of the flagellum associated with attachment to the midgut and oesophageal valve of the sandfly. Proc Roy Soc Lond Series B 187:409–419

    CAS  Google Scholar 

  • Klempner MS, Cendron M, Wyler DJ (1983) Attachment of plasma membrane vesicles of human macrophages to Leishmania tropica promastigotes. J Inf Dis 148:377–384

    CAS  Google Scholar 

  • Kutish GF, Janovy J (1981) Inhibition of in vitro macrophage digestion capacity by infection with Leishmania donovani (Protozoa: Kinetoplastida). J Parasit 67:457–462

    PubMed  CAS  Google Scholar 

  • Lepay DA, Nogueira N, Cohn Z (1983) Surface antigens of Leishmania donovani promastigotes. J Exp Med 157:1562–1572

    PubMed  CAS  Google Scholar 

  • Lewis DH, Peters W (1977) The resistance of intracellular Leishmania parasites to digestion by lysosomal enyzmes. Ann Trop Med Parasit 71:295–312

    PubMed  CAS  Google Scholar 

  • Liew FY (1983) A cloned T cell line expressing specific suppressive activity against in vitro and in vivo responses to Leishmania tropica. Nature 305:630–632

    PubMed  CAS  Google Scholar 

  • Liew FY, Hale C, Howard JG (1982) Immunological regulation of experimental cutaneous leishmaniasis: V. Characterization of effector and specific suppressor T cells. J Immunol 128:1917–1922

    PubMed  CAS  Google Scholar 

  • Lima GC, Engers HD, Louis JA (1984) Adoptive transfer of delayed-type hypersensitivity reactions specific for Leishmania major antigens to normal mice using murine T cell populations and clones generated in vitro. Clin exp Immunol 57:130–135

    PubMed  CAS  Google Scholar 

  • Louis JA, Lima GMC, Engers HD (1982a) Murine T lymphocyte responses specific for the protozoan parasites Leishmania tropica and Trypanosoma brucei. Clin Immunol Allergy 2:597

    Google Scholar 

  • Louis JA, Moedder E, MacDonald HR, Engers HD (1981) Recognition of protozoan parasites by murine T lymphocytes: II. Role of the H-2 gene complex in interactions between antigen-presenting macrophages and Leishmania immune T lymphocytes. J Immunol 126:1661–1666

    PubMed  CAS  Google Scholar 

  • Louis JA, Zubler RH, Coutinho SG, Lima GMC, Behir R, Mauel J, Engers HD (1982b) The in vitro generation and functional analysis of murine T cell populations and clones specific for a protozoan parasite, Leishmania tropica. Immunol Rev 61:215–243

    PubMed  CAS  Google Scholar 

  • Maryink W, du Costa CA, Magalkaes PA, Melo MN, Dias M, Oliviera Lima A, Michalick MS, Williams P (1979) A field trial of a vaccine against American dermal leishmaniasis. Trans Roy Soc Trop Med Hyp 73:385–387

    Google Scholar 

  • Mauel J (1984a) Mechanisms of survival of protozoan parasites in mononuclear phagocytes. Parasitol 88:579–592

    CAS  Google Scholar 

  • Mauel J (1984b) Intracellular parasite killing induced by electron carriers: I. Effects of electron carriers on intracellular Leishmania spp. in macrophages from different genetic backgrounds. Mol Biochem Parasitol 13:83–96

    PubMed  CAS  Google Scholar 

  • Mauel J, Schnyder J, Baggiolini M (1984) Intracellular parasite killing induced by electron carriers: II. Correlation between parasite killing and the induction of oxidative events in macrophages. Mol Biochem Parasitol 13:97–110

    PubMed  CAS  Google Scholar 

  • McMahon-Pratt D, Bennet E, David JR (1982) Monoclonal antibodies that distinguish subspecies of Leishmania braziliensis. J Immunol 129:926–927

    PubMed  CAS  Google Scholar 

  • McMahon-Pratt D, Bennet E, Grimaldi G, Jaffe CL (1985) Subspecies- and species-specific antigens of Leishmania mexicana characterized by monoclonal antibodies. J Immunol 134:1935–1940

    Google Scholar 

  • McMahon-Pratt D, David JR (1981) Monoclonal antibodies that distinguish between New World species of Leishmania. Nature 291:581–583

    Google Scholar 

  • McMahon-Pratt D, David JR (1982) Monoclonal antibodies recognizing determinants specific for the promastigote stage of Leishmania mexicana. Mol Biochem Parasitol 6:317–327

    Google Scholar 

  • Miles MA, Povoa MM, de Souza AA, Lainson R, Shaw JJ (1979) Some methods for the enzymatic characterization of Latin-American Leishmania with particular reference to Leishmania mexicana amazonensis and subspecies of Leishmania hertigi. Trans Roy Soc Trop Med Hyg 74:243–252

    Google Scholar 

  • Mosser DM, Edelson PJ (1984) Activation of the alternative complement pathway by Leishmania promastigotes: parasite lysis and attachment to macrophages. J Immunol 132:1501–1506

    PubMed  CAS  Google Scholar 

  • Murray HW (1981) Susceptibility of Leishmania to oxygen intermediates and killing by normal macrophages. J Exp Med 153:1302–1315

    PubMed  CAS  Google Scholar 

  • Murray HW (1982) Cell-mediated immune response to visceral leishmaniasis: II. Oxygen-dependent killing of intracellular Leishmania donovani amastigotes. J Exp Med 153:1302–1315

    Google Scholar 

  • Parrot L, Donatien A (1927) Le parasite du bouton d’Orient chez le phlébotome. Infection naturelle et infection expérimentale de Phlebotomus papatasi (Scop). Arch Inst Past d’Algerie 5:9–21

    Google Scholar 

  • Preston PM, Carter RL, Leuchars E, Davies AJS, Dumonde DC (1972) Experimental cutaneous leishmaniasis: III. Effects of thymectomy on the course of infection of CBA mice with Leishmania tropica. Clin exp Immunol 10:337–357

    PubMed  CAS  Google Scholar 

  • Ramasamy R, Kar SK, Jamnada H (1984) Cross-reacting surface antigens on Leishmania promastigotes. Int J Parasitol 13:337–341

    Google Scholar 

  • Remaley AT, Kuhns DB, Basford RE, Glew RH, Kaplan SS (1984) Leishmanial phosphatase blocks neutrophil 02-production. J Biol Chem 259:1173–1175

    Google Scholar 

  • Rezai HR, Farrell J, Soulsby EL (1980) Immunological responses of L. donovani infection in mice and significance of T cells in resistance to experimental leishmaniasis. Clin exp Immunol 40:508–514

    PubMed  CAS  Google Scholar 

  • Ridley MJ, Ridley DS (1984) Cutaneous leishmaniasis: immune complex formation and necrosis in the acute phase. Br J exp Path 65:327–336

    CAS  Google Scholar 

  • Russell DG, Miller D, Gull K (1984) Tubulin heterogeneity in the trypanosome Crithidiafasciculata. Mol Cell Biol 4:779–790

    PubMed  CAS  Google Scholar 

  • Russell DG, Wilhelm H (1985) The involvement of gp 63, the major surface glycoprotein, in the attachment of Leishmania promastigotes to macrophages. J Immunol (submitted)

    Google Scholar 

  • Sacks DL, Hieny S, Sher A (1985) Identification of cell surface carbohydrate and antigenic changes between non-infective and infective developmental stages of Leishmania major promastigotes. J Immunol 135:564–569

    PubMed  CAS  Google Scholar 

  • Sacks DL, Perkins PV (1984) Identification of an infective stage of Leishmania promastigotes. Science 223:1417–1419

    PubMed  CAS  Google Scholar 

  • Sacks DL, Perkins PV (1985) Development of infective stage Leishmania promastigotes within phlebotomine sandflies. Am J Trop Med Hyg (in press)

    Google Scholar 

  • Sacks DL, Scott PA, Asofsky R, Sher AF (1984) Cutaneous leishmaniasis in anti-IgM-treated mice: enhanced resistance due to functional depletion of a B cell-dependent T cell involved in the suppressor pathway. J Immunol 132:2072–2077

    PubMed  CAS  Google Scholar 

  • Schnur LF, Zuckerman A, Greenblatt CL (1972) Leishmanial serotypes as distinguished by the gel diffusion of factors excreted in vitro and in vivo. Isr J Med Sci 8:932–942

    PubMed  CAS  Google Scholar 

  • Scott P, Sacks D, Sher A (1983) Resistance to macrophage-mediated killing as a factor influencing the pathogenesis of chronic cutaneous leishmaniasis. J Immunol 131:966–971

    PubMed  CAS  Google Scholar 

  • Semprevivo LH, MacLeod LH (1981) Characterization of the exemetabolite of Leishmania donovani as a moved glycopeptidophosphosphingolipid. Biochem Biophys Res Comm 193:1179–1185

    Google Scholar 

  • Semprevivo LH, De Tolla LJ, Passmore HC, Palczuk NC (1981) Spectral model of leishmaniasis in congenic strains of mice. J Parasit 67:8–14

    PubMed  CAS  Google Scholar 

  • Sergiev VP (1977) Control measures against cutaneous leishmaniasis. In: Ecologie des Leishmaniasis. Colloque International du CNRS, no 239, Montpellier, pp 321–323

    Google Scholar 

  • Shepherd VL, Stahl PD, Bernd P, Rabinovitch M (1983) Receptor-mediated entry of B-glucoronidase into the parasitophorous vacuoles of macrophages infected with Leishmania mexicana amazonensis. J exp Med 157:1471–1482

    PubMed  CAS  Google Scholar 

  • Sheppard HW, Scott PA, Dwyer DM (1983) Recognition of Leishmania donovani antigens by murine T lymphocyte lines and clones. J Immunol 131:1496–1503

    PubMed  CAS  Google Scholar 

  • Silverstein SC (1977) Endocytic uptake of particles of mononuclear phagocytes and the penetration of obligate intracellular parasites. Am J Trop Med Hyg 26:161–168

    PubMed  CAS  Google Scholar 

  • Skov CB, Twohy DW (1974) Cellular immunity to Leishmania donovani: II. Evidence for synergy between thymocytes and lymph node cells in reconstitution of acquired resistance to L. donovani in mice. J Immunol 113:2012–2019

    PubMed  CAS  Google Scholar 

  • Slutzky GM, El-On J, Greenblatt CL (1979) Leishmanial excreted factor: protein-bound and free forms from promastigote cultures of Leishmania tropica and Leishmania donovani. Inf Immun 26:916–924

    CAS  Google Scholar 

  • Slutzky GM, Greenblatt CL (1977) Isolation of a carbohydrate rich immunologically active factor from cultures of Leishmania tropica. FEBS Lett 80:401–404

    PubMed  CAS  Google Scholar 

  • Slutzky GM, Greenblatt CL (1979) Analysis by SDS-polyacrylamide gel electrophoresis of an immunologically active factor of Leishmania tropica from growth media, promastigotes and infected macrophages. Biochem Med 21:70–77

    PubMed  CAS  Google Scholar 

  • Slutzky GM, Greenblatt CL (1982) Identification of galactose as the immunodominant sugar of leishmanial excreted factor and subsequent labelling with galactose oxidase and sodium boro [H] hydride. Inf Immun 37:10–14

    CAS  Google Scholar 

  • Steinberger A, Slutzky GM, El-On J, Greenblatt CL (1984) Leishmania tropica: protective response in C3H mice vaccinated with excreted factor cross-linked with synthetic adjuvant muramyl dipeptide. Exp Parasit 58:223–229

    PubMed  CAS  Google Scholar 

  • Turk JL (1975) Interaction between B and T lymphocytes in delayed hypersensitivity. In: Van Furth (ed) Mononuclear Phagocytes in Immunity Infection and Pathology. Blackwell, Oxford, pp 533–537

    Google Scholar 

  • Turk JL, Bryceson ADM (1971) Immunological phenomena in leprosy and related diseases. Advan Immunol 13:209–266

    CAS  Google Scholar 

  • Unanue ER (1981) The regulatory role of macrophages in antigenic stimulation: II: symbiotic relationship between lymphocytes and macrophages. Adv Immun 31:1–136

    PubMed  CAS  Google Scholar 

  • Unanue ER (1984) Antigen-presenting function of the macrophage. Ann Rev Immun 11:395–428

    Google Scholar 

  • WHO Technical Report No. 701 (1984) The Leishmaniases

    Google Scholar 

  • Wilson ME, Pearson RD (1984) Stage-specific variations in lectin binding to Leishmania donovani. Inf Immun 46:128–134

    CAS  Google Scholar 

  • Wright SD, Silverstein SC (1983) Receptors for C3b and iC3b promote phagocytosis but not the release of toxic oxygen from human phagocytes. J exp Med 158:2016–2023

    PubMed  CAS  Google Scholar 

  • Wyler DJ (1982) In vitro parasite-monocyte interactions in human leishmaniasis: evidence for an active role for the parasite in attachment. J Clin Invest 70:82–88

    PubMed  CAS  Google Scholar 

  • Zehavi V, El-On J, Pearlman K, Abrahams JC, Greenblatt CL (1983) Binding of Leishmania promastigotes to macrophages. Z. parasitenkd. 69:405–414

    PubMed  CAS  Google Scholar 

  • Zenian A, (19817 Leishmania tropica: biochemical aspects of promastigotes attachment to macrophages in vitro. Exp Parasitol 51:175–187

    PubMed  CAS  Google Scholar 

  • Zuckerman A (19757 Current status of the immunology of blood and tissue protozoa: I. Leishmania. Exp Parasit 38:370–400

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alexander, J., Russell, D.G. (1985). Parasite Antigens, Their Role in Protection, Diagnosis and Escape: The Leishmaniases. In: Parkhouse, R.M.E. (eds) Parasite Antigens in Protection, Diagnosis and Escape. Current Topics in Microbiology and Immunology, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09197-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09197-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-09199-9

  • Online ISBN: 978-3-662-09197-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics