Skip to main content

Interferometric Biosensors for Environmental Pollution Detection

  • Chapter
Optical Sensors

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 1))

Abstract

One important step in the development of biosensors is the design and fabrication of a highly sensitive physical transducer, that is, a device capable of transforming efficiently a chemical or biological reaction into a measurable signal. There are several physical methods to obtain this transducing signal such as those based on amperometric, potentiometric or acoustic systems. However, transducers that make use of optical principles offer more attractive characteristics such as immunity to electromagnetic interference, possible use in aggressive environments and, in general, a higher sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Raether H, (1977) Surface Plasmon oscillations and their applications, in Physics of Thin Films, vol 9, Academic Press, Florida, pp 145–262

    Google Scholar 

  2. Lechuga LM, Calle A, Prieto F (2000) Optical sensors based on evanescent field sensing. Part 1: Surface plasmon resonance sensors. Quim Anal 19: 7–13

    Google Scholar 

  3. http://www.biacore.com

  4. Melendez J, Carr R, Bartholomew DU, Kukanskis K, Elkind J, Yee S, Furlong C, Woodbury R (1996) A commercial solution for surface plasmon sensing. Sens Actuators B3536: 212–216

    Google Scholar 

  5. http://www.ti.com/spr

    Google Scholar 

  6. http://www.biosensor.com

  7. Tiefenthaler K, Lukosz W (1989) Sensitivity of grating couplers as integrated-optical chemical sensors. J Opt Soc Am B6: 209–220

    Article  CAS  Google Scholar 

  8. http://www.microvacuum.com

  9. Cush R, Cronin JM, Stewart WJ, Maule CH, Molloy J, Goddard NJ (1993) The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions. Part I: principle of operation and associated instrumentation. Biosen Bioelectron 8: 347–353

    Article  CAS  Google Scholar 

  10. http://www.affinity-sensors.com

  11. Giallorenzi TG, Bucaro JA, Dandridge A, Siegel GH, Cole JH, Rashleigh SC, Priest RG (1982) Optical Fiber Sensor Technology. IEEE J Quant Electron 18: 626–665

    Article  Google Scholar 

  12. Marcuse D (1974) Theory of dielectric optical waveguides. Academic Press, New York

    Google Scholar 

  13. Tamir T (1988) Guided-wave optoelectronics. Springer, Berlin

    Book  Google Scholar 

  14. Duguay MA, Kokubun Y, Koch TL (1986) Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures. Appl Phys Lett 49: 13–15

    Article  CAS  Google Scholar 

  15. Born M, Wolf E (1993) Principles of optics. Pergamon Press, Oxford

    Google Scholar 

  16. Mawst LJ, Yang H, Nesnidal M, Al-Muhanna A, Botez D, Vang TA, Alvarez FI), Johnson R (1998) High power single mode Al free InGaAs(P)/InGaP/GaAs distributed feedback diode lasers. J Crystal Growth 195: 609–616

    Article  CAS  Google Scholar 

  17. Kokubun Y, Asokawa A (1993) ARROW-type polarizer utilizing form birefringence in multilayer first cladding. IEEE Photon Technol Lett 5: 1418–1420

    Article  Google Scholar 

  18. Sato S, Pan W, Chen ST, Endo S, Suzuki S, Kokubun Y (1999) 59-nm trimming of centre wavelength of ARROW-type vertical coupler filter by UV irradiation. IEEE Photon Technol Lett 11: 358–360

    Google Scholar 

  19. Yamada Y, Sugito A, Moriwaki K, Ogawa I, Hashimoto T (1994) An application of a silica-on-terraced-silicon platform to hybrid Mach-Zehnder interferometric circuits consisting of silica waveguides and LiNbO3 phase-shifter. IEEE Photon Technol Lett 6: 822824

    Google Scholar 

  20. Nathan A, Bhatnagar YK, Benaissa K, Huang W (1995) Micromechanical Mach-Zehnder interferometer compatible with silicon integrated circuit and micromachined technologies. Sens Mater 7: 105–109

    CAS  Google Scholar 

  21. GarcĂ©s I, Villuendas F, SubĂ­as J, Alonso J, del Valle M, Dominguez C, BartolomĂ© E (1997) Bidimensional planar micro-optics for optochemical absorbance sensing. Opt Lett 23: 223–227

    Google Scholar 

  22. Prieto F, Lechuga LM, Calle A, Llobera A, Dominguez C (2001) Optimised silicon antiresonant reflecting optical waveguides for sensing applications. J Lightwave Technol, Enero

    Google Scholar 

  23. Tiefenthaler K, Lukosz W (1989) Sensitivity of grating couplers as integrated-optical chemical sensors. J Opt Soc Am B 6: 209–220

    Article  CAS  Google Scholar 

  24. Parriaux O, Veldhuis GJ (1998) Normalized analysis for the sensitivity optimization of integrated optical evanescent-wave sensors. J Lightwave Technol 16: 573–582

    Article  Google Scholar 

  25. Shipper EF, Brugman AM, Dominguez C, Lechuga LM, Kooyman RPH, Greve J (1997) The realisation of an integrated Mach-Zehnder waveguide immunosensor in silicon technology. Sens Actuators B 40: 147–153

    Article  Google Scholar 

  26. Prieto F, Llobera A, JimĂ©nez D, Dominguez C, Calle A, Lechuga LM (2000) Design and Analysis of Silicon Antiresonant Reflecting Optical Waveguides for Evanescent Field Sensors. J Lightwave Technol 18: 966–972

    Article  CAS  Google Scholar 

  27. Muhammad FA, Stewart G, Jin W (1993) Sensitivity enhancement of D-fibre methane gas sensor using high-index overlay. Proc Inst Electr Eng Part J 140: 115–118

    CAS  Google Scholar 

  28. Quigley GR, Harris RD, Wilkinson JS (1999) Sensitivity enhancement of integrated optical sensors by use of thin high-index films. Appl Optics 38: 6036–6039

    Article  CAS  Google Scholar 

  29. Campbell DP, McCloskey CJ (2002) Interferometric Biosensors. In: Optical Biosensors: present and future. Ch. 9, 277–304. Ed. Ligler FS, Taitt AR. Elsevier Science BV. ISBN: 0444–50974–7

    Google Scholar 

  30. Kooyman RPH, Lechuga LM (1997) Immunosensors based on Total Internal Reflectance“. Ch 8, 169–196. In „Handbook of Biosensors: Medicine, Food and the Environment”, Ed. Kress-Rogers, E. CRC Press, Boca Raton, Florida

    Google Scholar 

  31. Schipper E (1996) Waveguide immunosensing of small molecules. Thesis, University of Twente

    Google Scholar 

  32. Lechuga LM, Lenferink ATM, Kooyman RPH, Greve J (1995) Feasibility of evanescent wave interferometer immunosensors for direct detection of pesticides: Chemical aspects. Sens Actuators B 24: 762–765

    Google Scholar 

  33. Heideman RG, Kooyman RPH, Greve J (1993) Biosens: Performance of a highly sensitive optical waveguide Mach-Zehnder biosensor. Sens Actuators B 10: 209–217

    Google Scholar 

  34. Scheneider BH, Dickinson EL, Vach MD, Hoijer JV, Howard LV (2000) Highly sensitive optical chip immunoassays in human serum. Biosens Bioelec 15: 13–22

    Article  Google Scholar 

  35. Campbell DP, Gottfried DS, Roberts DW, Caspall JJ (2002) Proc. Europtrode VI (Sixth European Conference on Optical Chemical Sensors and Biosensors). P. 327. UMIST, Manchester, April

    Google Scholar 

  36. Shirshov Y, Snopok BA, Samoylov AV, Kiyanovskij AP, Venger EF, Nabok AV, Ray AK (2001) Analysis of the response of planar polarisation interferometer to molecular layer formation: fibrinogen adsorption on silicon nitride surface. Biosens Bioelec 16: 381390

    Google Scholar 

  37. AyrĂ€st P, Honkanent S, Gracet KM, Shrouf K, Katila P, Leppihalme M, Tervonen A, Yang X, Swanson B, Peyghambariam N (1998) Thin-film chemical sensors with waveguide Zeeman interferometry. Pure Appl Opt 1261–1271

    Google Scholar 

  38. Konz W, Brandenburg A, EdelhĂ€user R, Ott W, Wölfelshneider H (1989) A refractometer with fully packaged integrated optical sensor head, in: Arditty HJ, Dakin JP, Kersten RTh Optical fiber sensors. Springer Verlag, Berlin, pp 443–447

    Google Scholar 

  39. Luff BJ, Wilkinson JS, Piehler J, Hollenbach U, Ingenhoff J, Fabricius N (1998) Integrated optical Mach-Zehnder biosensor. J Lightwave Technol 16: 583–592

    Article  Google Scholar 

  40. Ikkink TJ (1998) Interferometric interrogation concepts for integrated electro-optical sensor systems, Thesis, University of Twente

    Google Scholar 

  41. Johnson GW, Leiner DC, Moore DT (1977) Phase-locked interferometry. Proc SPIE vol 126, pp 152–160

    Article  Google Scholar 

  42. SepĂșlveda B, Prieto F, Calle A, Llobera A, Dominguez C, Lechuga LM (2002) Integrated Optical Interferometric Biosensors based on Microelectronics Technology for Immunosensing. Proc Biosensors 2002, Kyoto, Japan, May 2002

    Google Scholar 

  43. Weisser M, Tovar G, Mittler S, Knoll W, Brosinger F, Freimuth H, Lacher M, Ehrfeld W (1999) Specific bio-recognition reactions observed with an integrated Mach-Zehnder interferometer. Biosens Bioelec 14: 405–411

    Article  CAS  Google Scholar 

  44. Brosinger F, Freimuth H, Lacher M, Ehrfeld W, Gedig E, Katerkamp A, Spener F, Cam-mann K (1997) A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach-Zehnder interferometer on silicon. Sens Actuators B 44: 350–355

    Article  Google Scholar 

  45. Busse S, Scheumann V, Menges B, Mittler S (2002) Sensitivity studies for specific binding reactions using the biotin/streptavidin system by evanescent optical methods. Bio-sens Bioelec 17: 704–710

    Article  CAS  Google Scholar 

  46. Busse S,DePaoli M,Wenz G, Mittler S (2001) An integrated optical Mach-Zehnder interferometer functionalised by ß-cyclodextrin to monitor binding reaction. Sens Actuators B 80: 116–124

    Article  Google Scholar 

  47. Kunz RE (1999) Integrated optics in sensors: advances toward miniaturised systems for chemical and biochemical sensing. In Integrated Optical Circuits and components: design and applications, Ed. Murphy EJ. Marcel Dekker, Inc, New York. ISBN: 0–82477577–5

    Google Scholar 

  48. Heideman RG, Lambeck PV (1999) Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system“. Sens Actuators B 61: 100–127

    Article  Google Scholar 

  49. Brandenburg A, Krauter R, KĂŒnzel C, Stefan M, Schulte H (2000) Interferometric sensor for detection of surface-bound bioreactions. Applied Optics 39: 6396–6405

    Article  CAS  Google Scholar 

  50. Brynda E, Houska M, Brandenburg A, Wikerstal A (2002) Optical biosensors for real-time measurement of analytes in blood plasma. Biosens Bioelec 17: 665–675

    Article  CAS  Google Scholar 

  51. Shipper EF, Bergevoet AJH, Kooyman RPH, Greve J (1997) New detection method for atrazine pesticides with the optical waveguide Mach-Zehnder immunosensor. Anal Chim Acta 341: 171–176

    Article  Google Scholar 

  52. Drapp B, Piehler J, Brecht A, Gauglitz G, Luff BJ, Wilkinson JS, Ingenhoff J (1997) Integrated optical Mach-Zehnder interferometers as simazine immunoprobes. Sens Actuators B 38–39: 277–282

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lechuga, L.M., Prieto, F., SepĂșlveda, B. (2004). Interferometric Biosensors for Environmental Pollution Detection. In: Optical Sensors. Springer Series on Chemical Sensors and Biosensors, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09111-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09111-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07421-9

  • Online ISBN: 978-3-662-09111-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics