Skip to main content

Eigenvalues of the Laplacian for PSL (2, ℤ): Some New Results and Computational Techniques

  • Chapter
International Symposium in Memory of Hua Loo Keng

Abstract

One of the most interesting problems in the Selberg trace formalism from the standpoint of computation is the explicit determination of discrete eigenfunctions of the automorphic Laplacian. Cf. [6, 7, 17, 20] for the necessary theoretical background.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. L. Balazs and A. Voros, Chaos on the pseudosphere, Phys. Reports 143(3) (1986) 109 – 240.

    Google Scholar 

  2. M. Berry, Quantum chaology, Proc. Royal Soc. London A413(1987) 183 — 198. See also: Proc. Royal Soc. London A400(1985) 229 – 251.

    Google Scholar 

  3. O. Bohigas, M. J. Giannoni, and Ch. Schmit, Spectral fluctuations, random matrix theories, and chaotic motion, Springer Lecture Notes in Physics 262(1986) 118 – 138.

    Google Scholar 

  4. P. Cartier, Some numerical computations relating to automorphic functions, in Conputers in Nuni,er Theory (ed. by A. O. L. Atkin and B. J. Birch), Academic Press, 1971, pp. 37 – 48.

    Google Scholar 

  5. G. Golub and C. Van Loan, Matrix Conputations,Johns Hopkins Univ. Press, 1983, especially pages 25 – 27 and 71 – 72.

    Google Scholar 

  6. D. A. Hejhal, The Selberg trace formula and the Riemann zeta function, Duke Math. J. 43 (1976) 441 –482.

    Google Scholar 

  7. D. A. Hejhal, The Selberg Trace Fomula for PSL (2,),volume 2, Springer Lecture Notes 1001(1983).

    Google Scholar 

  8. D. A. Hejhal, Some observations concerning eigenvalues of the Laplacian and Dirichlet L-series, in Recent Progress in Analytic Number Theory (ed. by H. Halberstam and C. Hooley), volume 2, Academic Press, 1981, pp. 95 – 110.

    Google Scholar 

  9. D. A. Hejhal and E. Bombieri, Sur les zéros des fonctions zêta d ‘Epstein, Comptes Rendus Acad. Sci. Paris 304(1987)213– 217.

    Google Scholar 

  10. D. A. Hejhal, Zeros of Epstein zeta functions and supercomputers, in Proceedings of the International Congress of Mathematicians, Berkeley, 1986, pp. 1362 – 1384.

    Google Scholar 

  11. D. A. Hejhal, Some remarks about cusp forms: holomorphic and non-holomorphic, Technical Report No. 1984–26, Chalmers Univ. of Tech. ( Sweden ), 1984, 33 pp.

    Google Scholar 

  12. D. A. Hejhal and B. Berg, Some new results concerning eigenvalues of the non-Euclidean Laplacian for PSL (2, 77), Technical Report No. 82 — 172, University of Minnesota, 1982, 7 pp.

    Google Scholar 

  13. H. Iwaniec, Non-holomorphic modular forms and their applications, in Modular Forms (ed. by R. A. Rankin), Ellis-Horwood Ltd., 1984, pp. 157 — 196.

    Google Scholar 

  14. N. V. Kuznecov, Petersson’s conjecture for cusp forms of weight zero and Linnik’s conjecture; sums of Kloosterman sums, Math. USSR Sbomik 39(1981) 299 — 342.

    Google Scholar 

  15. A. M. Odlyzko, On the distribution of spacings between zeros of the zeta function, Math. of Comp. 48 (1987) 273 — 308.

    Google Scholar 

  16. G. Pôlya, Bemerkung über die Integraldarstellung der Riemannschen -Funktion, Acta Math. 48(1926) 305 — 317.

    Google Scholar 

  17. A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. 20(1956) 47 — 87.

    Google Scholar 

  18. C. Se ries, Some geometrical models of chaotic dynamics, Proc. Royal Soc. London A413 (1987) 171 — 182.

    Google Scholar 

  19. H. Stark, Fourier coefficients of Maass waveforms, in Modular Foras (ed. by R. A. Rankin), EllisHorwood Ltd., 1984, pp. 263 — 269.

    Google Scholar 

  20. A. B. Venkov, Spectral Theory of Automorphic Functions,Proc. Steklov Inst. of Math. 153(1982). (English Translation)

    Google Scholar 

  21. G. N. Watson, A Treatise on the Theory of Bessel Functions, 2’d edition, Cambridge Univ. Press, 1944.

    Google Scholar 

  22. M. Wilkinson, Random matrix theory in semiclassical quantum mechanics of chaotic systems, J. Phys. A: Math. Gen. 21(1988) 1173 — 1190.

    Google Scholar 

  23. A. Winkler, Cusp forms and Hecke groups, J. Reine Angew. Math. 386(1988) 187 — 204.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sheng Gong Qi-Keng Lu Yuan Wang Lo Yang

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hejhal, D.A. (1991). Eigenvalues of the Laplacian for PSL (2, ℤ): Some New Results and Computational Techniques. In: Gong, S., Lu, QK., Wang, Y., Yang, L. (eds) International Symposium in Memory of Hua Loo Keng. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07981-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07981-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-07983-6

  • Online ISBN: 978-3-662-07981-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics