Skip to main content

Antimicrobial Activity of Sponges and Corals

  • Chapter
Coral Health and Disease

Abstract

Bacteria and other microorganisms are ubiquitous in the marine environment. They are taxonomically diverse, biologically active and colonize all marine habitats, from the deep oceans to the shallowest estuaries (Austin 1988; Rheinheimer 1992), as well as coral reefs (Ducklow 1990). Living benthic marine organisms such as sponges and corals are frequently colonized by bacteria. Sponges are known to harbor a diverse range of microorganisms (Bergquist 1978; Wilkinson 1978). In some cases, up to 50% of the sponge weight was attributed to their symbiotic bacteria (Wilkinson 1978). The surface of living corals is covered by mucus (Ducklow and Mitchell 1979a). This mucus layer is colonized by bacteria, allowing the establishment of a bacterial community that can be characteristic to a particular coral species (Mitchell and Chet 1975; Ducklow and Mitchell 1979b; Rublee et al. 1980; Segal and Ducklow 1982; Ritchie et al. 1994; Rohwer et al. 2002). Some of these bacteria can be pathogenic to sponges and corals, and may initiate disease, such as tissue necrosis in sponges (Webster et al. 2002), and several diseases in corals, such as black band disease (Antonius 1985; Carlton and Richardson 1995), white plague type II (Smith et al. 1996; Richardson et al. 1998), tissue necrosis (Hodgson 1990; Ben-Haim and Rosenberg 2002), and even bleaching of the Mediterranean scleractinian coral Oculina patagonica (Kushmaro et al. 1996, 1997). On the other hand, bacteria could serve as beneficial symbionts or as benign associates. For example, Gil-Turnes et al. (1989) showed that bacteria on the surface of externally held eggs of the shrimp Palaeman macrodactylus produce a metabolite that inhibits fungal infections that are lethal to the eggs. Therefore, sponges and corals need the ability to regulate the bacteria they encounter and to resist microbial colonization and the invasion of potential pathogens in order to prevent possible detrimental effects. One method of combating microbial attack is by chemical defense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aceret TL, Coll JC, Ychio Y, Sammarco PW (1998) Antimicrobial activity of the diterpenes flexibilide and sinulariolide derived from Sinularia flexibilis Quoy and Gaimard 1833 (Coelenterata: Alcyonacea, Octocorallia). Comp Biochem Physiol C 120: 121–126

    Google Scholar 

  • Albrizio S, Ciminiello P, Fattorusso E, Magno S, Pawlik JR (1995) Amphitoxin, a new high molecular weight antifeedant pyridinium salt from the Caribbean sponge Amphimedon compressa. J Nat Prod 58: 647–652

    Article  PubMed  CAS  Google Scholar 

  • Almourabit A, Gillet B, Ahond A, Beloeil JC, Poupat C, Potier P (1989) Invertébrés marins du lagon Néo-Calédonien, XI. Les desoxyhavannahines, nouveaux métabolites de Xenia membranacea. J Nat Prod 52: 1080–1087

    Article  CAS  Google Scholar 

  • Amade P, Pesando D, Chevolot L (1982) Antimicrobial activities of marine sponges from French Polynesia and Brittany. Mar Biol 70: 223–228

    Article  Google Scholar 

  • Amade P, Charroin C, Baby C, Vacelet J (1987) Antimicrobial activities of marine sponges from the Mediterranean Sea. Mar Biol 94: 271–275

    Article  Google Scholar 

  • Antonius A (1985) Black band disease infection experiments on hexacorals and octocorals. Proc 5th Int Coral Reef Symp, Tahiti 6: 155–160

    Google Scholar 

  • Austin B (1988) Marine microbiology. Cambridge Univ Press, New York

    Google Scholar 

  • Becerro MA, Lopez NI, Turon X, Uriz MJ (1994) Antimicrobial activity and surface bacterial film in marine sponges. J Exp Mar Biol Ecol 179: 195–205

    Article  Google Scholar 

  • Benayahu Y, Loya Y (1983) Surface brooding in the Red Sea soft coral Parerythropodium fulvum fulvum (Forskâl, 1775). Biol Bull 165: 353–369

    Article  Google Scholar 

  • Ben-Haim Y, Rosenberg E (2002) A novel Vibrio sp. pathogen of the coral Pocillopora damicornis. Mar Biol 141: 47–55

    Article  Google Scholar 

  • Bergquist PR (1978) Sponges. Univ California Press, Berkeley

    Google Scholar 

  • Bergquist PR, Bedford JJ (1978) The incidence of antibacterial activity in marine Demospongiae; systematic and geographic considerations. Mar Biol 46: 216–221

    Article  Google Scholar 

  • Berlinck RGS, Ogawa CA, Almeida AMP, Sanchez MAA, Malpezzi ELA, Costa LV, Hajdu E, de Freitas JC (1996) Chemical and pharmacological characterization of halitoxin from Amphimedon viridis ( Porifera) from the southeastern Brazilian coast. Comp Biochem Physiol C 115: 155–163

    Google Scholar 

  • Bewley CA, Holland ND, Faulkner DJ (1996) Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 52: 716–722

    Article  PubMed  CAS  Google Scholar 

  • Burkholder PR (1973) The ecology of marine antibiotics and coral reefs. In: Jones OA, Endean R (eds) Biology and geology of coral reefs, vol II. Biology. Academic Press, New York, pp 117–176

    Chapter  Google Scholar 

  • Burkholder PR, Burkholder LM (1958) Antimicrobial activity of horny corals. Science 127: 1174–1175

    Article  PubMed  CAS  Google Scholar 

  • Burkholder PR, Ruetzler K (1969) Antimicrobial activity of some marine sponges. Nature 222: 983–984

    Article  PubMed  CAS  Google Scholar 

  • Carlton RG, Richardson LL (1995) Oxygen and sulfide dynamics in a horizontally migrating cyanobacterial mat: black band disease of corals. FEMS Microbiol Ecol 18: 155–162

    Article  CAS  Google Scholar 

  • Ciereszko LS, Guillard RRL (1989) The incidence of some cembranolides from gorgonian corals on motility of marine flagellates. J Exp Mar Biol Ecol 127: 205–210

    Article  CAS  Google Scholar 

  • Coll JC (1992) The chemistry and chemical ecology of octocorals (Coelenterata, A.nthozoa, Octocorallia). Chem Rev 92 (4): 613–631

    Article  CAS  Google Scholar 

  • De Nys R, Dworjanyn SA, Steinberg PD (1998) A new method for determining surface concentrations of marine natural products on seaweeds. Mar Ecol Prog Ser 162: 79–87

    Article  Google Scholar 

  • De Silva ED, Scheuer PJ (1980) Manoalide, an antibiotic sesterterpenoid from the marine sponge Luffariella variavilis ( Polejaeff ). Tetrahedron Lett 21: 1611–1614

    Google Scholar 

  • Ducklow HW (1990) The biomass, production and fate of bacteria in coral reefs. In: Dubinsky Z (ed) Ecosystems of the world: coral reefs. Elsevier, New York, pp 265–289

    Google Scholar 

  • Ducklow HW, Mitchell R (1979a) Composition of mucus released by coral reef coelenterates. Limnol Oceanogr 24: 706–714

    Article  CAS  Google Scholar 

  • Ducklow HW, Mitchell R (1979b) Bacterial populations and adaptations in the mucus layers on living corals. Limnol Oceanogr 24: 715–725

    Article  Google Scholar 

  • Elyakov GB, Kuznetsova T, Mikhailov VV, Maltsev II, Voinov VG, Fedoreyev SA (1991) Brominated diphenyl ethers from a marine bacterium associated with the sponge Dysidea sp. Experientia (Basel) 47: 632–633

    Article  CAS  Google Scholar 

  • Faulkner DJ (2002) Marine natural products. Nat Prod Rep 19: 1–48

    PubMed  CAS  Google Scholar 

  • Franklin TJ, Snow GA (1981) Biochemistry of antimicrobial action. Chapman and Hall, London

    Google Scholar 

  • Gil-Turnes MS, Hay ME, Fenical W (1989) Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus. Science 246: 116–118

    Article  PubMed  CAS  Google Scholar 

  • Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Ebert L, Molin S, Steinberg PD, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 178: 6618–6622

    PubMed  CAS  Google Scholar 

  • Green G, Gomez P, Bakus GJ (1990) Antimicrobial and ichthyotoxic properties of marine sponges from Mexican Waters. In: Rutzler K (ed) New perspectives in sponge biology. Smithsonian Institution Press, Washington, DC, pp 109–114

    Google Scholar 

  • Hay ME (1996) Marine chemical ecology: what’s known and what’s next? J Exp Mar Biol Ecol 200: 103–134

    Article  CAS  Google Scholar 

  • Higgs MD, Faulkner DJ (1978) Plakortin, an antibiotic from Plakortis halichondroides. J Org Chem 43: 3454–3457

    Article  CAS  Google Scholar 

  • Hodgson G (1990) Tetracycline reduces sedimentation damage to corals. Mar Biol 104: 493–496

    Article  CAS  Google Scholar 

  • Jakowska S, Nigrelli RF (1960) Antimicrobial substances from sponges. Ann NY Acad Sci 90: 913–916

    Article  PubMed  CAS  Google Scholar 

  • Jenkins KM, Jensen PR, Fenical W (1998) Bioassays with marine microorganisms. In: Haynes KF, Millar JG (eds) Methods in chemical ecology, vol 2. Bioassay methods. Chapman and Hall, New York, pp 1–38

    Google Scholar 

  • Jensen PR, Harvell CD, Wirtz K, Fenical W (1996) Antimicrobial activity of extracts of Caribbean gorgonian corals. Mar Biol 125: 411–419

    Article  Google Scholar 

  • Kelman D, Kushmaro A, Loya Y, Kashman Y, Benayahu Y (1998) Antimicrobial activity of a Red Sea soft coral, Parerythropodium fulvum fulvum: reproductive and developmental considerations. Mar Ecol Prog Ser 169: 87–95

    Article  Google Scholar 

  • Kelman D, Kashman Y, Rosenberg E, Ilan M, Ifrach I, Loya Y (2001) Antimicrobial activity of the reef sponge Amphimedon viridis from the Red Sea: evidence for selective toxicity. Aquat Microb Ecol 24: 9–16

    Article  Google Scholar 

  • Kim D, Lee IS, Jung JH, Yang SI (1999) Psammaplin A, a natural bromotyrosine derivative from a sponge, possesses the antibacterial activity against methicillin-resistant Staphylococcus aureus and the DNA gyrase-inhibitory activity. Arch Pharm Res 22 (1): 25–29

    Article  PubMed  CAS  Google Scholar 

  • Kim K (1994) Antimicrobial activity in gorgonian corals (Coelenterata, Octocorallia). Coral Reefs 13: 75–80

    Article  Google Scholar 

  • Koh EGL (1997) Do scleractinian corals engage in chemical warfare against microbes? J Chem Ecol 23 (2): 379–398

    Article  CAS  Google Scholar 

  • König GM, Coll JC, Bowden BF, Gulbis JM, MacKay MF, La Barre SC, Laurent D (1989) The structure determination of xenicane diterpene from Xenia garciae. J Nat Prod 52: 294–299

    Article  Google Scholar 

  • Kushmaro A, Loya Y, Fine M, Rosenberg E (1996) Bacterial infection and coral bleaching. Nature 380: 396

    Article  CAS  Google Scholar 

  • Kushmaro A, Rosenberg E, Fine M, Loya Y (1997) Bleaching of the coral Oculina patagonica by Vibrio AK-1. Mar Ecol Prog Ser 147: 159–165

    Article  Google Scholar 

  • Maximilien R, de Nys R, Holmström C, Gram L, Givskov M, Crass K, Kjelleberg S, Steinberg PD (1998) Chemical mediation of bacterial surface colonisation by secondary metabolites from the red alga Delisea pulchra. Aquat Microb Ecol 15: 233–246

    Article  Google Scholar 

  • McCaffrey EJ, Endean R (1985) Antimicrobial activity of tropical and subtropical sponges. Mar Biol 89: 1–8

    Article  Google Scholar 

  • McClintock JB, Gauthier JJ (1992) Antimicrobial activities of Antarctic sponges. Antarct Sci 4 (2): 179–183

    Article  Google Scholar 

  • Mikki W, Otaki N, Yokoyama A, Kusumi T (1996) Possible origin of zeaxanthin in the marine sponge, Reniera japonica. Experientia (Basel) 52: 93–96

    Article  Google Scholar 

  • Mitchell R, Chet I (1975) Bacterial attack of corals in polluted seawater. Micro Ecol 2: 227–233

    Article  Google Scholar 

  • Monks NR, Lerner C, Henriques AT, Farias FM, Schapoval EES, Suyenaga ES, da Rocha AB, Schwartsmann G, Mothes B (2002) Anticancer, antichemotactic and antimicrobial activities of marine sponges collected off the coast of Santa Catarina, southern Brazil. J Exp Mar Biol Ecol 281: 1–12

    Article  Google Scholar 

  • Muricy G, Hajdu E, Araujo FV, Hagler AN (1993) Antimicrobial activity of southwestern Atlantic shallow-water marine sponges (Porifera). Sci Mar 57 (4): 427–432

    Google Scholar 

  • Newbold RW, Jensen PR, Fenical W, Pawlik JR (1999) Antimicrobial activity of Caribbean sponge extracts. Aquat Microb Ecol 19: 279–284

    Article  Google Scholar 

  • Nigrelli RF, Jakowska S, Calventi I (1959) Ectyonin, an antimicrobial agent from the sponge Microciona prolifera Verril. Zoologica (NY) 44: 173–175

    CAS  Google Scholar 

  • Paul VJ (1992) Ecological roles of marine natural products. Cornell Univ Press, New York

    Google Scholar 

  • Pawlik JR (1993) Marine invertebrate chemical defenses. Chem Rev 93: 1911–1922

    Article  CAS  Google Scholar 

  • Rheinheimer G (1992) Aquatic microbiology, 4th edn. Wiley, New York

    Google Scholar 

  • Richardson LL, Goldberg WM, Kuta KG (1998) Florida’s mystery coral-killer identified. Nature 392: 557–558

    Article  CAS  Google Scholar 

  • Rinehart KL et al. (25 co-authors) (1981) Marine natural products as sources of antiviral, antimicrobial, and antineoplastic agents. Pure Appl Chem 53:795–817

    Article  CAS  Google Scholar 

  • Ritchie KB, Smith GW, Gerace DT (1994) Grouping of bacterial heterotrophs from scleractinian corals using metabolic potentials. Proc 26th Meet Assoc Mar Lab Caribbean. San Salvador, Bahamas, Bahamian field stations, pp 224–236

    Google Scholar 

  • Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243: 1–10

    Article  Google Scholar 

  • Rublee AP, Lasker RH, Gottfriend M, Roman RM (1980) Production and bacterial colonization of mucus from the soft coral Briarium asbestinum. Bull Mar Sci 30 (4): 888–893

    Google Scholar 

  • Sammarco PW, Coll JC (1988) The chemical ecology of alcyonarian corals (Coelenterata: Octocorallia). In: Scheuer PJ (ed) Bioorganic marine chemistry. vol 2. Springer, Berlin Heidelberg New York, pp 87–116

    Chapter  Google Scholar 

  • Sammarco PW, Coll JC (1992) Chemical adaptations in the Octocorallia: evolutionary considerations. Mar Ecol Prog Ser 88: 93–104

    Article  CAS  Google Scholar 

  • Schmitz FJ, Hollenbeak KH, Campbell DC (1978) Marine natural products: Balitoxin, toxic complex of several marine sponges of the genus Haliclona. J Org Chem 43: 3916–3922

    Google Scholar 

  • Segel AL, Ducklow WH (1982) A theoretical investigation into the influence of sublethal stresses on coral-bacterial ecosystem dynamics. Bull Mar Sci 32 (4): 919–935

    Google Scholar 

  • Slattery M, McClintock JB, Heine IN (1995) Chemical defenses in Antarctic soft corals: evidence for antifouling compounds. J Exp Mar Biol Ecol 190: 61–77

    Article  CAS  Google Scholar 

  • Smith GW, Ives LD, Nagelkerken IA, Ritchie KB (1996) Caribbean sea-fan mortalities. Nature 383: 487

    Article  CAS  Google Scholar 

  • Uriz MJ, Turon X, Galera J, Tur JM (1996) New light on the cell location of avarol within the sponge Dysidea avara ( Dendroceratida ). Cell Tissue Res 285: 519–527

    Google Scholar 

  • Wahl M, Jensen PR, Fenical W (1994) Chemical control of bacterial epibiosis on ascidians. Mar Ecol Prog Ser 110: 45–57

    Article  Google Scholar 

  • Wallace RW (1997) Drugs from the sea: harvesting the results of aeons of chemical evolution. Mol Med Today 3: 291–295

    Article  PubMed  CAS  Google Scholar 

  • Walls JT, Ritz DA, Blackman AJ (1993) Fouling, surface bacteria and antibacterial agents of four bryozoan species found in Tasmania, Australia. J Exp Mar Biol Ecol 169: 1–13

    Google Scholar 

  • Webster NS, Negri AP, Webb RI, Hill RT (2002) A spongin-boring alpha-proteobacterium is the etiological agent of disease in the Great Barrier Reef sponge Rhopaloeides odorabile. Mar Ecol Prog Ser 232: 305–309

    Article  Google Scholar 

  • Wilkinson CR (1978) Microbial associations in sponges. II. Numerical analysis of sponge and water bacterial populations. Mar Biol 49: 169–176

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kelman, D. (2004). Antimicrobial Activity of Sponges and Corals. In: Rosenberg, E., Loya, Y. (eds) Coral Health and Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06414-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06414-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05863-9

  • Online ISBN: 978-3-662-06414-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics