Skip to main content

Basic Signal Concepts

  • Chapter
Computer Speech

Part of the book series: Springer Series in Information Sciences ((SSINF,volume 35))

Abstract

In this chapter we introduce the basic concepts that govern signal analysis for both continuous and discrete signals, including Fourier and Hilbert transforms, correlation functions, and the cepstrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J.R. Pierce, A.M. Noll: Signals: The Science of Telecommunications (W.H. Freeman, New York 1990)

    Google Scholar 

  2. A. Papoulis: The Fourier Integral and its Applications (McGraw-Hill, New York 1962). See also [11.8]

    MATH  Google Scholar 

  3. D.C. Champeney: Fourier Transforms and their Applications (Academic Press, London 1973)

    MATH  Google Scholar 

  4. B.B. Mandelbrot: The Fractal Geometry of Nature, updated and augmented (W.H. Freeman, New York 1983)

    Google Scholar 

  5. M.R. Schroeder: Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise (W.H. Freeman, New York 1991)

    MATH  Google Scholar 

  6. B.B. Mandelbrot: Fractals in Scaling and Finance (Springer, New York 1997)

    Book  MATH  Google Scholar 

  7. N. Wiener: The Extrapolation and Smoothing of Stationary Time Series with Engineering Applications (John Wiley, New York 1949)

    Google Scholar 

  8. A. Papoulis: Signal Analysis (McGraw-Hill, New York 1984)

    Google Scholar 

  9. W. Hess: Pitch Determination of Speech Signals: Algorithms and Devices (Springer, Berlin, Heidelberg 1983)

    Book  Google Scholar 

  10. S.O. Rice: Mathematical analysis of random noise. Bell Syst. Tech. J. 23, 282–332 (1944), and

    MathSciNet  MATH  Google Scholar 

  11. S.O. Rice: Mathematical analysis of random noise. Bell Syst. Tech. J.24, 46–156 (1945)

    MathSciNet  MATH  Google Scholar 

  12. S.W. Golomb: Shift Register Sequences (Holden-Day, San Francisco 1967)

    MATH  Google Scholar 

  13. F.J. MacWilliams, N.J.A. Sloane: The Theory of Error Correcting Codes (North-Holland, Amsterdam 1977)

    MATH  Google Scholar 

  14. M.R. Schroeder: Number Theory in Science and Communication, 3rd ed. (Springer, Berlin, Heidelberg 1997)

    MATH  Google Scholar 

  15. B.F. Logan, M.R. Schroeder: Compatible Single-Sideband Transmission (U.S. Patent 3,085,203, filed August 8, 1960, issued April 9, 1963)

    Google Scholar 

  16. M.R. Schroeder: Improved acoustic feedback stability by frequency shifting. J. Acoust. Soc. Am. 36, 1718–1724 (1964)

    Article  ADS  Google Scholar 

  17. M.R. Schroeder: Die statistischen Parameter der Fequenzkurven von großen Räumen. Acustica 4, 594–600, Beiheft 2, (1954).

    Google Scholar 

  18. English translation: M.R. Schroeder: Statistical parameters of the frequency response curves of large rooms. J. Audio Eng. Soc. 35, 299–305 (1987)

    MathSciNet  Google Scholar 

  19. T. Gramss, S. Bornholdt, M. Gross, M. Mitchell, T. Pellizzari (eds.): NonStandard Computing (Wiley-VCH, Weinheim 1998)

    Google Scholar 

  20. M.R. Schroeder: Synthesis of low peak-factor signals and binary sequences with low autocorrelation. IEEE Trans. Inform. Theory IT 13, 85–89 (1970)

    Article  Google Scholar 

  21. M.R. Schroeder: Peak factor in vocoders

    Google Scholar 

  22. M.R. Schroeder: Normal frequency and excitation statistics: Model experiments with electrical waves. J. Audio Eng. Soc. 35, No. 5 (1987)

    Google Scholar 

  23. M.R. Schroeder: Measurement of reverberation time by counting phase coincidences. In L. Cremer (ed.): Proc. 3rd Internatl. Congress on Acoustics (Elsevier, Amsterdam 1959)

    Google Scholar 

  24. J.L. Flanagan, L. Landgraf, D.J. MacLean: Matched-filter processing of hydrophone arrays. J. Acoust. Soc. Am. 42, 1165 (1967)

    Article  ADS  Google Scholar 

  25. M.R. Schroeder: Multipath Focussing Signal Processor (U.S. Patent 3,424,269, filed September 30, 1966, issued January 28, 1969)

    Google Scholar 

  26. J.W. Goodman: Introduction to Fourier Optics (McGraw-Hill, New York 1988)

    Google Scholar 

  27. L.R. Rabiner, R.W. Schafer: Digital Processing of Speech Signals (Prentice-Hall, Englewood Cliffs, New Jersey, 1978)

    Google Scholar 

  28. D. Bouwmeester, J.-W. Pau, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  29. H.O. Pollak, D. Slepian: Prolate spheroidal wave functions. Fourier analysis and uncertainty I. Bell Syst. Tech. J. 40, 43–64 (1961)

    MathSciNet  MATH  Google Scholar 

  30. H.J. Landau, H.O. Pollak: Prolate spheroidal wave functions. Fourier analysis and uncertainty II, III. Bell Syst. Tech. J. 40, 65–84 (1961) and

    MathSciNet  MATH  Google Scholar 

  31. H.J. Landau, H.O. Pollak: Prolate spheroidal wave functions. Fourier analysis and uncertainty II, III. Bell Syst. Tech. J. 41, 1295–1336 (1962).

    MathSciNet  MATH  Google Scholar 

  32. See also D. Slepian: Prolate spheroidal wave functions. Fourier analysis and uncertainty IV, V. Bell Syst. Tech. J. 43, 3009–3057 (1964) and

    Google Scholar 

  33. See also D. Slepian: Prolate spheroidal wave functions. Fourier analysis and uncertainty IV, V. Bell Syst. Tech. J. 57, 1371–1430 (1978)

    Google Scholar 

  34. R.B. Blackman, J.W. Tukey: The Measurement of Power Spectra (Dover, New York 1958)

    Google Scholar 

  35. V.A. Topkar, S.K. Mullick, E.L. Titlebaum: Invariant transformations of the t-ω plane with respect to Wigner Distribution. Signal Processing 22, 127–137 (1991)

    Article  Google Scholar 

  36. T.A.C.M. Claasen, W.F.G. Mecklenbräuker: The Wigner distribution — a tool for time—frequency signal analysis. Part I: Continuous-time signals. Philips J. Res. 35, 217–250 (1980)

    MathSciNet  MATH  Google Scholar 

  37. T.A.C.M. Claasen, W.F.G. Mecklenbräuker: The aliasing problem in discrete-time Wigner distributions. IEEE Trans. Acoust., Speech and Signal Processing ASSP-31, 1067–1072 (1983)

    Google Scholar 

  38. C.R. Janse, A.J.M. Kaizer: Time-frequency distributions of loudspeakers: The application of the Wigner distribution. J. Audio. Eng. Soc. 31, 198–223 (1983)

    Google Scholar 

  39. T.A.C.M. Claasen, W.F.G. Mecklenbräuker: The Wigner distribution — a tool for time-frequency signal analysis. Part II: Discrete-time signals. Philips J. Res. 35, 276–300 (1980)

    MathSciNet  MATH  Google Scholar 

  40. M.R. Schroeder, E.E. David, Jr.: A vocoder for transmitting 10kc/s speech over 3.5 kc/s channel. Acustica 10, 35–43 (1960)

    Google Scholar 

  41. A.M. Noll: Short-time spectrum and ‘cepstrum’ technique for vocal-pitch detection. J. Acoust. Soc. Am. 36, 296–302 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  42. A.V. Oppenheim, R.W. Schafer, T.G. Stockham: Nonlinear filtering of multiplied and convolved signals. Proc. IEEE 56, 1264–1291 (1968)

    Article  Google Scholar 

  43. A.V. Oppenheim: Speech analysis-synthesis system based on homomorphic filtering. J. Acoust. Soc. Am. 45, 459–462 (1969)

    ADS  Google Scholar 

  44. F. Itakura: Line spectral representation of linear predictor coefficients of speech signals. J. Acoust. Soc. Am. 57, Suppl. 1, S35 (1975).

    Article  ADS  Google Scholar 

  45. See also C.S. Liu, M.-T. Wang, H.-C. Wang: Study of line spectrum pair frequencies for speaker recognition. Proc. IEEE Internatl. Conference Acoustics, Speech, and Signal Processing (ICASSP 90), 277–280 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schroeder, M.R. (2004). Basic Signal Concepts. In: Computer Speech. Springer Series in Information Sciences, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06384-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06384-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05956-8

  • Online ISBN: 978-3-662-06384-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics