Skip to main content

Cellular Mortality and Immortalization: A Complex Interplay of Multiple Gene Functions

  • Chapter
Cell Immortalization

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 24))

Abstract

Since the pioneering work of Hayflick and Moorhead (1961) it has been generally accepted that normal somatic cells when cultured can undergo only a limited number (depending on the cell type) of divisions and reach an irreversibly growth arrested, but viable stage. The age of cells is determined by the number of times cells divide rather than the calendar time elapsed. The restricted replicative capacity of normal cells which confers them the mortal divisional phenotype is widely accepted as the most consistent manifestation of cellular aging. Relevance of in vitro life span of cells to in vivo aging is evidenced by

  1. (1)

    the correlation of in vitro life span and the donor age

  2. (2)

    correlation between in vitro life span with the average life expectancy of the species, and

  3. (3)

    the reduced life span of cells from patients afflicted with premature aging syndromes (Smith and Pereira-Smith 1996; Kaul et al. 1998a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banga SS, Kim S, Hubbard K, Dasgupta T, Jha KK, Patsalis P, Hauptschein R, Gamberi B, DallaFavera R, Kraemer P, Ozer H L (1997) SEN6, a locus for SV40-mediated immortalization of human cells, maps to 6q26–27. Oncogene 14: 313–321

    Article  PubMed  CAS  Google Scholar 

  • Barrett JC, Annab LA, Alcorta D, Preston G, Vojta P, Yin Y (1994) Cellular senescence and cancer. Cold Spring Harbor Symp Quant Biol 59: 411–418

    Article  PubMed  CAS  Google Scholar 

  • Bartek J, Bartkova J, Lukas J (1997) The retinoblastoma protein pathway in cell cycle control and cancer. Exp Cell Res 237: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Berube NG, Smith JR, Pereira-Smith OM (1998) The genetics of cellular senescence. Am J Hum Genet 62: 1015–1019

    Article  PubMed  CAS  Google Scholar 

  • Bini L, Magi B, Marzocchi B, Arcuri F, Tripodi S, Cintorino M, Sanchez JC, Frutiger S, Hughes G, Pallini V, Hochstrasser DF, Tosi P (1997) Protein expression profiles in human breast ductal carcinoma and histologically normal tissue. Electrophoresis 18: 2832–2841

    Article  PubMed  CAS  Google Scholar 

  • Blasco MA, Lee HW, Rizen M, Hanahan D, DePinho R, Greider CW (1997) Mouse models for the study of telomerase. Ciba Found Symp 211: 160–170

    PubMed  CAS  Google Scholar 

  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay J W, Lichtsteiner S, Wright W E (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279: 349–352

    Article  PubMed  CAS  Google Scholar 

  • Bond JA, Wyllie FS, Wynford-Thomas D. (1994) Escape from senescence in human diploid fibroblasts induced directly by mutant p53. Oncogene 9: 1885–1889

    PubMed  CAS  Google Scholar 

  • Bond J, Haughton M, Blaydes J, Gire V, Wynford-Thomas D, Wyllie F (1996) Evidence that transcriptional activation by p53 plays a direct role in the induction of cellular senescence. Oncogene 13: 2097–2104

    PubMed  CAS  Google Scholar 

  • Broccoli D, Godley LA, Donehower LA, Varmus HE, de Lange T (1996) Telomerase activation in mouse mammary tumors: lack of detectable telomere shortening and evidence for regulation of telomerase RNA with cell proliferation. Mol Cell Biol 16: 3765–3772

    PubMed  CAS  Google Scholar 

  • Brown JP, Wei W, Sedivy JM (1997) Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277: 831–834

    Article  PubMed  CAS  Google Scholar 

  • Brugarolas J, Chandrasekaran C, Gordon JI, Beach D, Jacks T, Hannon GJ (1995) Radiationinduced cell cycle arrest compromised by p21 deficiency. Nature 377: 552–557

    Article  PubMed  CAS  Google Scholar 

  • Bruschi SA, Lindsay JG (1994) Mitochondrial stress protein actions during chemically induced renal proximal tubule cell death. Biochem Cell Biol 72: 663–667

    Article  PubMed  CAS  Google Scholar 

  • Bryan TM, Englezou A, Gupta J, Bacchetti S, Reddel RR (1995) Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J 14: 4240–4248

    PubMed  CAS  Google Scholar 

  • Carman TA, Afshari CA, Barrett JC (1998) Cellular senescence in telomerase-expressing Syrian hamster embryo cells. Exp Cell Res 244: 33–42

    Article  PubMed  CAS  Google Scholar 

  • Chang ZF (1997) Regulatory mechanisms of replication growth limits in cellular senescence. J Formos Med Assoc 96: 784–791

    PubMed  CAS  Google Scholar 

  • Chin L, Pomerantz J, DePinho RA (1998) The INK4a/ARF tumor suppressor: one gene-two products-two pathways. Trends Biochem Sci 23: 291–296

    Article  PubMed  CAS  Google Scholar 

  • Counter CM (1996) The roles of telomeres and telomerase in cell life span. Mutat Res 366: 45–63

    Article  PubMed  Google Scholar 

  • Deng C, Zhang P, Harper JW, Elledge SJ, Leder P (1995) Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82: 675–84

    Article  PubMed  CAS  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens, M, Rubelj I

    Google Scholar 

  • Pereira-Smith OM, et al. (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci. USA 92: 9363–9967

    Article  Google Scholar 

  • Domanico SZ, DeNagel DC, Dahlseid JN, Green JM, Pierce SK (1993) Cloning of the gene encoding peptide-binding protein 74 shows that it is a new member of the heat shock protein 70 family. Mol Cell Biol 13: 3598–3610

    PubMed  CAS  Google Scholar 

  • Duncan EL, Reddel RR (1997) Genetic changes associated with immortalization. A review. Biochemistry (Mosc) 62: 1263–1274

    Google Scholar 

  • Fujii M, Ide T, Wadhwa R, Tahara H, Kaul SC, Mitsui Y, Ogata T, Oishi M, Ayusawa D. (1995) Inhibitors of cGMP-dependent protein kinase block senescence induced by inactivation of T antigen in SV40-transformed immortal human fibroblasts. Oncogene 11: 627–634

    PubMed  CAS  Google Scholar 

  • Giaccia AJ, Kastan MB (1998) The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev 12: 2973–2983

    Article  PubMed  CAS  Google Scholar 

  • Gire V, Wynford-Thomas D (1998) Reinitiation of DNA synthesis and cell division in senescent human fibroblasts by microinjection of anti-p53 antibodies. Mol Cell Biol 18: 1611–1621

    PubMed  CAS  Google Scholar 

  • Gonos ES (1998) Expression of the growth arrest specific genes in rat embryonic fibroblasts undergoing senescence. Ann N Y Acad Sci 851: 466–469

    Article  PubMed  CAS  Google Scholar 

  • Guarente L (1996) Do changes in chromosomes cause aging ? Cell 86: 9–12

    Article  PubMed  CAS  Google Scholar 

  • Guarente L (1997) Link between aging and the nucleolus. Genes Dev 11: 2449–2455

    Article  PubMed  CAS  Google Scholar 

  • Haber DA (1997) Splicing into senescence: the curious case of p16 and p19ARF. Cell 91: 555–558

    Article  PubMed  CAS  Google Scholar 

  • Hara E, Smith R, Parry D, Tahara, H, Stone S, Peters G (1996) Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence. Mol. Cell Biol 16: 859–867

    Google Scholar 

  • Harley CB, Vaziri H, Counter CM, Allsopp RC (1992) The telomere hypothesis of cellular aging. Exp Gerontol 27: 375–382

    Article  PubMed  CAS  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25: 585–621

    Article  PubMed  CAS  Google Scholar 

  • Holliday R (1987) The inheritance of epigenetic defects. Science 238: 163–170

    Article  PubMed  CAS  Google Scholar 

  • Holliday R (1995) Understanding Ageing. Cambridge University Press Cambridge Iatropoulos MJ, Williams GM (1996) Proliferation markers. Exp Toxicol Pathol 48: 175–181

    Google Scholar 

  • Jost CA, Marin MC, Kaelin WG Jr (1997) p73 is a human p53-related protein that can induce apoptosis. Nature 389: 191–194

    Google Scholar 

  • Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A, Minty A, Chalon P, Lelias JM, Dumont X, Ferrara P, McKeon F, Caput D (1997) Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90: 809–819

    Article  PubMed  CAS  Google Scholar 

  • Kaneko S, Satoh Y, Ikemura K, Konishi T, Ohji T, Karasaki Y, Higashi K, Gotoh S (1995) Alterations of expression of the cytoskeleton after immortalization of human fibroblasts. Cell Struct Fund 20: 107–115

    Article  CAS  Google Scholar 

  • Kaul SC, Wadhwa R, Komatsu Y, Sugimoto Y, Mitsui Y (1993) On the cytosolic and perinuclear mortalin: an insight by heat shock. Biochem Biophys Res Commun 193: 348–355

    Article  PubMed  CAS  Google Scholar 

  • Kaul SC, Mitsui Y, Komatsu Y, Reddel RR, Wadhwa R. (1996) A highly expressed 81 kDa protein in immortalized mouse fibroblast: its proliferative function and identity with ezrin. Oncogene 13: 1231–1237

    PubMed  CAS  Google Scholar 

  • Kaul SC, Matsui M, Takano S, Sugihara T, Mitsui Y, Wadhwa R (1997) Expression analysis of mortalin, a unique member of the Hsp70 family of proteins, in rat tissues. Exp Cell Res 232: 56–63

    Article  PubMed  CAS  Google Scholar 

  • Kaul SC, Mitsui Y, Wadhwa R (1998a) Molecular insights to cellular mortality and immortalization. Ind J Exp Biol 36: 345–352

    CAS  Google Scholar 

  • Kaul SC, Duncan EL, Englezou A, Takano S, Reddel RR, Mitsui Y, Wadhwa R (1998b) Malignant transformation of NIH 3t3 cells by overexpression of mot-2 protein. Oncogene 17: 907–911

    Article  PubMed  CAS  Google Scholar 

  • Kim NW (1997) Clinical implications of telomerase in cancer. Eur J Cancer 33: 781–786

    Article  PubMed  CAS  Google Scholar 

  • Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387: 299–303

    Article  PubMed  CAS  Google Scholar 

  • Kulju KS, Lehman JM (1995) Increased p53 protein associated with aging in human diploid fibroblasts. Exp Cell Res 217: 336–345

    Article  PubMed  CAS  Google Scholar 

  • Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M, Lowe SW (1998) Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 12: 3008–3019

    Article  PubMed  CAS  Google Scholar 

  • Massa SM, Longo FM, Zuo J, Wang S, Chen J, Sharp FR (1995) Cloning of rat grp75, an hsp70family member, and its expression in normal and ischemic brain. J Neurosci Res 40: 807–819

    Article  PubMed  CAS  Google Scholar 

  • Merrick BA, Patterson RM, Witcher LL, He C, Selkirk JK (1994) Separation and sequencing of familiar and novel murine proteins using preparative two-dimensional gel electrophoresis. Electrophoresis 15: 735–745

    Article  PubMed  CAS  Google Scholar 

  • Mizzen LA, Kabiling AN, Welch WJ (1991) The two mammalian mitochondrial stress proteins, grp 75 and hsp 58, transiently interact with newly synthesized mitochondrial proteins. Cell Regul 2: 165–179

    PubMed  CAS  Google Scholar 

  • Nakabayashi K, Ogata T, Fujii M, Tahara H, Ide T, Wadhwa R, Kaul SC, Mitsui Y, Ayusawa D. (1997) Decrease in amplified telomeric sequences and induction of senescence markers by introduction of human chromosome 7 or its segments in SUSM-1. Exp Cell Res 235: 345–353

    Article  PubMed  CAS  Google Scholar 

  • Ning Y, Weber JL, Killary AM, Ledbetter DH, Smith JR, Pereira-Smith OM (1991) Genetic analysis of indefinite division in human cells: evidence for a cell senescence-related gene(s) on human chromosome 4. Proc Natl Acad Sci USA 88: 5635–5639

    Article  PubMed  CAS  Google Scholar 

  • Noble JR, Rogan EM, Neumann AA, Maclean K, Bryan TM, Reddel RR (1996) Association of extended in vitro proliferative potential with loss of p16INK4 expression. Oncogene 13: 1259–1268

    PubMed  CAS  Google Scholar 

  • Noda A, Ning Y, Venable SF, Pereira-Smith OM, Smith JR (1994) Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 211: 90–98

    Article  PubMed  CAS  Google Scholar 

  • Ogata T, Ayusawa D, Namba M, Takahashi E, Oshimura M, Oishi M (1993) Chromosome 7 suppresses indefinite division of nontumorigenic immortalized human fibroblast cell lines KMST-6 and SUSM-1. Mol Cell Biol 13: 6036–6043

    PubMed  CAS  Google Scholar 

  • Ogryzko VV, Hirai TH, Russanova VR, Barbie DA, Howard BH (1996) Human fibroblast commitment to a senescence-like state in response to histone deacetylase inhibitors is cell cycle dependent. Mol Cell Biol 16: 5210–5218

    PubMed  CAS  Google Scholar 

  • Osada M, Ohba M, Kawahara C, Ishioka C, Kanamaru R, Katoh I, Ikawa Y, Nimura Y, Nakagawara A, Obinata M, Ikawa S (1998) Cloning and functional analysis of human p51, which structurally and functionally resembles p53. Nat Med 4: 839–843

    Article  PubMed  CAS  Google Scholar 

  • Oshimura M, Barrett JC (1997) Multiple pathways to cellular senescence: role of telomerase repressors. Eur J Cancer 33: 710–715

    Article  PubMed  CAS  Google Scholar 

  • Palmero I, Pantoja C, Serrano M (1998) p19ARF links the tumour suppressor p53 to Ras. Nature 395: 125–126

    Google Scholar 

  • Pereira-Smith OM, Smith JR (1988) Genetic analysis of indefinite division in human cells: identification of four complementation groups. Proc Natl Acad Sci USA 85: 6042–6046

    Article  PubMed  CAS  Google Scholar 

  • Prowse KR, Greider CW (1995) Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc Natl Acad Sci USA 92: 4818–4822

    Article  PubMed  CAS  Google Scholar 

  • Rattan SI (1996) Cellular and molecular determinants of ageing. Indian J Exp Biol 34: 1–6

    PubMed  CAS  Google Scholar 

  • Reddel RR, Bryan TM, Murnane JP (1997) Immortalized cells with no detectable telomerase activity. A review. Biochemistry (Mosc) 62: 1254–1262

    Google Scholar 

  • Sandhu AK, Hubbard K, Kaur GP, Jha KK. Ozer HL, Athwal RS (1994) Senescence of immortal human fibroblasts by the introduction of normal human chromosome 6. Proc Natl Acad Sci USA 91: 5498–5502

    Article  PubMed  CAS  Google Scholar 

  • Sasaki M, Honda T, Yamada H, Wake N, Barrett JC, Oshimura M (1994) Evidence for multiple pathways to cellular senescence. Cancer Res 54: 6090–6093

    PubMed  CAS  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602

    Article  PubMed  CAS  Google Scholar 

  • Seshadri T, Campisi J (1990) Repression of c-fos transcription and an altered genetic program in senescent human fibroblasts. Science 247: 205–209

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ (1998). Tumor surveillance via the ARF-p53 pathway. Genes Dev 12: 2984–2991

    Article  PubMed  CAS  Google Scholar 

  • Sherwood SW, Rush D, Ellsworth JL, Schimke RT (1988) Defining cellular senescence in IMR-90 cells: a flow cytometric analysis. Proc Natl Acad Sci USA 85: 9086–9090

    Article  PubMed  CAS  Google Scholar 

  • Smith JR, Pereira-Smith OM (1996) Replicative senescence: implications for in vivo aging and tumor suppression. Science 273: 63–67

    Article  PubMed  CAS  Google Scholar 

  • Sugawara O, Oshimura M, Koi M, Annab LA, Barrett JC. (1990) Induction of cellular senescence in immortalized cells by human chromosome 1. Science 247: 707–710

    Article  PubMed  Google Scholar 

  • Takano S, Wadhwa R, Yoshii Y, Nose T, Kaul SC, Mitsui Y (1997) Elevated levels of mortalin expression in human brain tumors. Exp Cell Res 237: 38–45

    Article  PubMed  CAS  Google Scholar 

  • ATrink B, Okami K, Wu L, Sriuranpong V, Jen J, Sidransky D (1998) A new human p53 homologue. Nat Med 4: 747–748

    Article  Google Scholar 

  • Vaziri H, Benchimol S (1996) From telomere loss to p53 induction and activation of a DNA-damage pathway at senescence: the telomere loss/DNA damage model of cell aging. Exp Gerontol 31: 295–301

    Article  PubMed  CAS  Google Scholar 

  • von Zglinicki T, Saretzki G (1997) Molecular mechanisms of senescence in cell culture. Z. Gerontol Geriatr 30: 24–28

    Google Scholar 

  • Wadhwa R, Kaul SC, Ikawa Y, Sugimoto Y (1991a) Protein markers for cellular mortality and immortality. Mutat Res 256: 243–254

    Article  PubMed  CAS  Google Scholar 

  • Wadhwa R, Ikawa Y, Sugimoto Y (199 lb) Natural and conditional ageing of mouse fibroblasts: genetic vs. epigenetic control. Biochem Biophys Res Commun 178: 269–275

    Google Scholar 

  • Wadhwa R, Kaul SC, Ikawa Y, Sugimoto Y (1993a) Identification of a novel member of mouse hsp70 family. Its association with cellular mortal phenotype. J Biol Chem 268: 6615–6621

    Google Scholar 

  • Wadhwa R, Kaul SC, Sugimoto Y, Mitsui Y (1993b) Induction of cellular senescence by transfection of cytosolic mortalin cDNA in NIH 3T3 cells. J Biol Chem 268: 22239–22242

    PubMed  CAS  Google Scholar 

  • Wadhwa R, Kaul SC, Mitsui Y, Sugimoto Y (1993c) Differential subcellular distribution of mortalin in mortal and immortal mouse and human fibroblasts. Exp Cell Res 207: 442–448

    Article  PubMed  CAS  Google Scholar 

  • Wadhwa R, Kaul SC, Mitsui Y (1994) Cellular mortality to immortalization: mortalin. Cell Struct Funct 19: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Wadhwa R, Pereira-Smith OM, Reddel RR, Sugimoto Y, Mitsui Y, Kaul SC (1995) Correlation between complementation group for immortality and the cellular distribution of mortalin. Exp Cell Res 216: 101–106

    Article  PubMed  CAS  Google Scholar 

  • Wadhwa R, Akiyama S, Sugihara T, Reddel RR, Mitsui Y, Kaul SC (1996) Genetic differences between the pancytosolic and perinuclear forms of murine mortalin. Exp Cell Res 226: 381–386

    Article  PubMed  CAS  Google Scholar 

  • Wadhwa, R, Takano S, Robert M, Yoshida A, Nomura H, Reddel RR, Mitsui Y, Kaul SC (1998) Inactivation of tumor suppressor p53 by mot-2, a hsp70 family member. J Biol Chem 273: 29586–29591

    Article  PubMed  CAS  Google Scholar 

  • Wang E (1995) Senescent human fibroblasts resist programmed cell death, and failure to suppress bc12 is involved. Cancer Res 55: 2284–2292

    PubMed  CAS  Google Scholar 

  • Wang E, Lee MJ, Pandey S (1994) Control of fibroblast senescence and activation of programmed cell death. J Cell Biochem 54: 432–439

    Article  PubMed  CAS  Google Scholar 

  • Wareham KA, Lyon MF, Glenister PH, Williams ED (1987) Age related reactivation of an X-linked gene. Nature 327: 725–727

    Article  PubMed  CAS  Google Scholar 

  • Webster TI, Naylor DJ, Hartman DJ, Hoj PB, Hoogenraad NJ (1994) cDNA cloning and efficient mitochondrial import of pre-mtHSP70 from rat liver. DNA Cell Biol. 13: 1213–1220

    Google Scholar 

  • Weinberg R. A. (1996) The molecular basis of carcinogenesis: understanding the cell cycle clock. Cytokines Mol Ther 2: 105–110

    PubMed  CAS  Google Scholar 

  • Whitaker NJ, Bryan TM, Bonnefin P, Chang AC, Musgrove EA, Braithwaite AW, Reddel RR (1995) Involvement of RB-1, p53, p16INK4 and telomerase in immortalisation of human cells. Oncogene 11: 971–976

    PubMed  CAS  Google Scholar 

  • Wynford-Thomas D (1996a) p53: guardian of cellular senescence. J Pathol 180: 118–121

    Google Scholar 

  • Wynford-Thomas D (1996b) Telomeres, p53 and cellular senescence. Oncol Res 8: 387–398

    PubMed  CAS  Google Scholar 

  • Yeager TR, Stadler W, Belair C, Puthenveettil J, Olopade O, Reznikoff C. (1995) Increased p16 levels correlate with pRb alterations in human urothelial cells. Cancer Res. 55: 493–497

    PubMed  CAS  Google Scholar 

  • Yeager TR, DeVries S, Jarrard DF, Kao C, Nakada SY, Moon TD, Bruskewitz R, Stadler WM, Meisner LF, Gilchrist KW, Newton MA, Waldman FM, Reznikoff CA (1998) Overcoming cellular senescence in human cancer pathogenesis. Genes Dev 12: 163–174

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Xiong Y, Yarbrough WG (1998) ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92: 725–734

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Woods D, McMahon M, Bishop JM (1998) Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev 12: 2997–3007.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wadhwa, R., Kaul, S.C., Mitsui, Y. (1999). Cellular Mortality and Immortalization: A Complex Interplay of Multiple Gene Functions. In: Macieira-Coelho, A. (eds) Cell Immortalization. Progress in Molecular and Subcellular Biology, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06227-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06227-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08491-1

  • Online ISBN: 978-3-662-06227-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics