Skip to main content

Bioavailability of Dioxin-Like Compounds for Microbial Degradation

  • Chapter
Biodegradation of Dioxins and Furans

Part of the book series: Environmental Intelligence Unit ((EIU))

Abstract

Nowadays the most frequently offered explanation for the failure of biotechno-logical measures to remediate polluted environments is poor bioavailability. We generally regard microorganisms as potent cleaning agents which are hindered by environmental factors as they pursue their business. On the other hand, ready bioavailability of pollutants to plants, animals and humans is one of the main risks arising from polluted sites. This seems to be contradictory, so much the more as limited bioavailability for degradation and ready bioavailability for toxic effects often are seen as characteristics of the same contamination. It appears that bioavailability is a Janus-faced characteristic of environmental chemicals. A treatise regarding bioavailability therefore requires a clear-cut definition of what is meant by this term and how a given bioavailability should be rated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bosma TNP, Middeldorp PJM, Schraa G, et al. Mass transfer limitation of biotransformation: quantifying bioavailability. Environ Sci Technol 1997; 31: 248–252.

    Google Scholar 

  2. Adriaens P, Fu Q, Grbic-Galic D. Bioavailability and transformation of highly chlorinated dibenzo-p-dioxins and dibenzofurans in anaerobic soils and sediments. Environ Sci Technol 1995; 29: 2252–2260.

    Google Scholar 

  3. Parsons JR, Toussaint M. The availability of chlorinated dioxins and dibenzofurans for biodegradation in Rhine sediment. In: Bioavailability, speciation and transformation of organic and inorganic compounds in soil and sediment systems. Wageningen, The Netherlands: The Netherlands Integrated Soil Research Programme Reports, 1996: 99–107.

    Google Scholar 

  4. Pignatello JJ, Xing B. Mechanisms of slow sorption of organic chemicals to natural particles. Environ Sci Technol 1996; 30: 1–11.

    Article  CAS  Google Scholar 

  5. Karickhoff SW. Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere 1981; 10: 833–846.

    Article  CAS  Google Scholar 

  6. Schwarzenbach RP, Gschwend PM, Imboden DM. Environmental Organic Chemistry. New York: John Wiley and Sons. 1993

    Google Scholar 

  7. Hoff JT, Mackay D, Gillham R et al. Partitioning of organic chemicals at the air-water interface in environmental systems. Environ Sci Technol 1993; 272174–2180.

    Google Scholar 

  8. Quensen JF III, Boyd SA, Tiedje JM. Dechlorination of four commercial polychlorinated biphenyl mixtures (Arochlors) by anaerobic microorganisms from sediments. Appl Environ Microbiol 1990; 56: 2360–2369.

    CAS  Google Scholar 

  9. Weissenfels WD, Klewer HJ, Langhoff J. Adsorption of polycyclic aromatic hydrocarbons (PAH’s) by soil particles–influence on biodegradability and biotoxicity. Appl Microbiol Biotechnol 1992; 36: 689–696.

    Google Scholar 

  10. lo. Ogram AV, Jessup RE, Ou L-T et al. Effects of sorption on biological degradation rates of (2,4-dichlorophenoxy)acetic acid in soils. Appl Environ Microbiol 1985; 49: 582–587.

    Google Scholar 

  11. Alvarez-Cohen L, McCarty PL, Roberts PV. Sorption of trichloroethylene onto a zeolite accompanied by methanotrophic biotransformation. Environ Sci Technol 1993; 27: 2141–2148.

    Google Scholar 

  12. Alexander M. How toxic are toxic chemicals in soil? Environ Sci Technol 1995; 29: 2713–2717.

    Google Scholar 

  13. Di Domenico A, Silano V, Viviano G et al. Accidental release of 2,3,7,8tetrachlorodibenzo-p-dioxin (TCDD) at Sèveso, Italy. V. Environmental persistence of TCDD in soil. Ecotoxicol Environ Safety 1980; 4:339-345.

    Google Scholar 

  14. Czuczwa JM, Hites RA. Environmental fate of combustion-generated polychlorinated dioxins and furans. Environ Sci Technol 1984; 18:444-450.

    Google Scholar 

  15. Beurskens JEM, Mol GAJ, Barreveld HL et al. Geochronology of priority pollutants in a sedimentation area of the Rhine river. Environ Toxicol Chem 1993; 12: 1549–1566.

    Google Scholar 

  16. Alcock RE, Jones KC. Dioxins in the environment: a review of trend data. Environ Sci Technol 1996; 30:3133-3143.

    Google Scholar 

  17. Ramaswami A, Goshal S, Luthy RG. Mass transfer and biodegradation of PAH compounds from coal tar. Wat Sci Technol 1994; 30: 61–70.

    Google Scholar 

  18. Volkering F, Breure AM, Sterkenburg A et al. Microbial degradation of polycyclic aromatic hydrocarbons: effect of substrate availability on bacterial growth kinetics. Appl Microbiol Biotechnol 1992; 36: 548–552.

    Google Scholar 

  19. Harms H, Zehnder AJB. Bioavailability of sorbed 3-chlorodibenzofuran. Appl Environ Microbiol 1995; 61:27-33.

    Google Scholar 

  20. Michaelis L, Menten MML. Die Kinetik der Invertinwirkung. Biochem Z 1913; 49:333-369.

    Google Scholar 

  21. Button DK. Kinetics of nutrient-limited transport and microbial growth. MicrobiolRev 1985; 49270–297.

    Google Scholar 

  22. Harms H, Bosma TNP. Mass transfer limitation of microbial growth and pollutant degradation. J Ind Microbiol 1997; 18: 97–105.

    Google Scholar 

  23. Law AT, Button DK. Multiple-carbon-source-limited growth kinetics of a marine coryneform bacterium. J Bacteriol 1977; 129: 115–123.

    CAS  Google Scholar 

  24. Jannasch, HW, Egli T. Microbial growth kinetics–a historical perspective. Antonie Van Leeuwenhoek 1993; 63: 213–224.

    Google Scholar 

  25. Monod J. 1942. Recherches sur la croissance des cultures bactériennes. Paris: Hermann and Cie.

    Google Scholar 

  26. Monod J. La technique de culture continue; théorie et applications. Ann Inst Pasteur 1950; 79: 390–410.

    Google Scholar 

  27. Beefting HH, van der Heijden RTJM, Heijnen JJ. Maintenance requirements: energy supply from simultaneous endogenous respiration and substrate consumption. FEMS Microbiol Ecol 1990; 73: 203–21o.

    Google Scholar 

  28. Herbert D. Some principles of continuous culture. In: Tuneval D, ed. Recent Progress in Microbiology. Stockholm: Almqvist and Wiksell, 1959:381-396

    Google Scholar 

  29. van Uden N. Transport-limited growth in the chemostat and its competitive inhibition; a theoretical treatment. Arch Mikrobiol 1967; 58145-154.

    Google Scholar 

  30. o. Tros ME, Bosma TNP, Schraa G et al. Measurement of minimum substrate concentration (Sm;,,) in a recycling fermentor and its prediction from the kinetic parameters of Pseudomonas sp. strain B13 from batch and chemostat cultures. Appl Environ Microbiol 1996; 62:3655-3661.

    Google Scholar 

  31. Kovärové K, Käch A, Zehnder AJB et al. Cultivation of Escherichia coli with mixtures of 3-phenylpropionic acid and glucose: steady-state growth kinetics. Appl Environ Microbiol 1996; 63: 2619–2624.

    Google Scholar 

  32. Bumpus JA, Tien M, Wright D et al. Oxidation of persistent environmental pollutants by a white rot fungus. Science 1985; 228:1434-1436.

    Google Scholar 

  33. Valli K, Wariishi H, Gold MH. Degradation of 2,7-dichlorodibenzo-p-dioxin by the lignin-degrading basidiomycete Phanerochaete chrysosporium. J Bacteriol 1992; 174: 2131–2137.

    Google Scholar 

  34. Takada S, Nakamura M, Matsueda T et al. Degradation of polychlorinated dibenzop-dioxins and polychlorinated dibenzofurans by the white rot fungus Phanerochate sordida YK-624. Appl Environ Microbiol 1996; 62: 4323–4328.

    Google Scholar 

  35. Kirk TK, Farrell RL. Enzymatic “combustion”: the microbial degradation of lignin. Ann Rev Microbiol 1987; 41: 465–505.

    Google Scholar 

  36. Tien M. Properties of ligninase from Phanerochaete chrysosporium and their possible applications. CRC Crit Rev Microbiol 1987; 15: 141–168.

    Article  CAS  Google Scholar 

  37. Harms H, Zehnder AJB. Influence of substrate diffusion on degradation of dibenzofuran and 3-chlorodibenzofuran by attached and suspended bacteria. Appl Environ Microbiol 1994; 60: 2736–2745.

    Google Scholar 

  38. Koch AL, Wang CH. How close to the theoretical diffusion limit do bacterial uptake systems function? Arch Microbiol 1982; 131: 36–42.

    Article  CAS  Google Scholar 

  39. Isensee AR, Jones GE. Distribution of 2,3,7,8-tetrachlorodibenzo-p-dioxin in aquatic model ecosystems. Environ Sci Technol 1975; 6: 1017–1019.

    Google Scholar 

  40. Ward CT, Matsumura F. Fate of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in a model aquatic environment. Arch Environ Contam Toxicol 1978; 7: 349–357.

    Google Scholar 

  41. Quensen JF III, Matsumura F. Oxidative degradation of 2,3,7,8-tetrachlorodibenzop-dioxin by microorganisms. Environ Toxicol Chem 1983; 2: 261–268.

    CAS  Google Scholar 

  42. Kearney PC, Woolson EA, Ellington CP. Persistence and metabolism of chlorodioxins in soils. Environ Sci Technol 1972; 6: 1017–1019.

    Article  CAS  Google Scholar 

  43. Nash RG, Beall, ML Jr. Distribution of Silvex, 2,4-D, and TCDD applied to turf in chambers and field plots. J Agric Food Chem 1980; 28: 614–623.

    Article  CAS  Google Scholar 

  44. Philippi M, Krasnobajew V, Zeyer J et al. Fate of TCDD in microbial cultures and in soil under laboratory conditions. In: Leisinger T, Hütter R, Cook AM, Nüesch J, eds. Microbial Degradation of Xenobiotics and Recalcitrant Compounds. London: Academic Press. 1981: 221–233.

    Google Scholar 

  45. Shiu WY, Doucette W, Gobas FAPC et al. Physical-chemical properties of chlorinated dibenzo-p-dioxins. Environ Sci Technol 1988; 22: 651–658.

    Article  CAS  Google Scholar 

  46. Drost-Hansen W. Structure of water near solid interfaces. Ind Eng Chem 1969; 57: 18–37.

    Article  Google Scholar 

  47. Marple L, Brunck R, Throop L. Water solubility of 2,3,7,8-tetrachlorodibenzo-pdioxin. Environ Sci Technol 1986; 20: 180–182.

    Article  CAS  Google Scholar 

  48. Chiou CT. Theoretical considerations of the partition uptake of nonionic organic compounds by soil organic matter. In: Sawhney BL, Brown K, eds. Reactions and Movement of Organic Chemicals in Soils. Madison, WI: Soil Science Society of America, 1989: 1–29.

    Google Scholar 

  49. Loonen H. 1994. Bioavailability of chlorinated dioxins and furans in the aquatic environment. Ph.D. thesis, University of Amsterdam, Amsterdam, The Netherlands.

    Google Scholar 

  50. Garbarini DR, Lion LW. Influence of the nature of soil organics on the sorption of toluene and trichloroethylene. Environ Sci Technol 1986; 20: 1263–1269.

    Article  CAS  Google Scholar 

  51. Grathwohl P. Verteilung unpolarer organischer Verbindungen in der wasserungesättigten Bodenzone am Beispiel leichtflüchtiger aliphatischer Chlorkohlenwasserstoffe. Ph.D. thesis. University of Tübingen, Germany, 1989: 1–102.

    Google Scholar 

  52. Grathwohl P. Influence of organic matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic hydrocarbons: implications on K 0 correlations. Environ Sci Technol 1990; 24: 1687–1693.

    Article  CAS  Google Scholar 

  53. Walters RW, Ostazeski SA, Guiseppi-Elie A. Sorption of 2,3,7,8-tetrachlorodibenzop-dioxin from water by surface soils. Environ Sci Technol 1989; 23:480-484.

    Google Scholar 

  54. Sikkema J, de Bont JAM, Poolman B. Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 1995; 59: 201–222.

    Google Scholar 

  55. Baughman GL, Paris DF. Microbial bioconcentration of organic pollutants from aquatic systems–a critical review. CRC Crit Rev Microbiol 1981; 8: 205–228.

    Article  CAS  Google Scholar 

  56. Barkovskii AL, Adriaens P. Microbial dechlorination of historically present and freshly spiked chlorinated dioxins and diversity of dioxin-dechlorinating populations. Appl Environ Microbiol 1996; 62:4556-4562.

    Google Scholar 

  57. Jucker BA, Harms H, Zehnder AJB. Polymer interactions between bacterial cells and glass investigated using LPS micelles. Submitted for publication.

    Google Scholar 

  58. Bünz PV, Cook AM. Dibenzofuran 4,4a-dioxygenase from Sphingomonas sp. strain RW1: angular dioxygenation by a three-component enzyme system. J Bacteriol 1993; 175: 6467–6475.

    Google Scholar 

  59. Brusseau ML, Jessup RE, Rao PSC. Nonequilibrium sorption of organic chemicals: elucidation of rate-limiting processes. Environ Sci Technol 1991; 25: 134–142.

    Article  CAS  Google Scholar 

  60. Wu S, Gschwend PM. Sorption kinetics of hydrophobic organic compounds to natural sediments and soils. Environ Sci Technol 1986; 20: 717–725.

    Article  CAS  Google Scholar 

  61. Estes TI, Shah RV, Vilker VL. Adsorption of low molecular weight halocarbons by montmorillonite. Environ Sci Technol 1988; 22:377-381.

    Google Scholar 

  62. Barriuso E, Laird DA, Koskinen WC et al. Atrazine desorption from smectites. Soil Sci Soc Am J 1994; 58: 1632–1638.

    Google Scholar 

  63. Ball WP, Roberts PV. Long-term sorption of halogenated organic chemicals by aquifer material. 1. Equilibrium. Environ Sci Technol 1991; 25: 1223–1237.

    Google Scholar 

  64. Ball WP, Roberts PV. Long-term sorption of halogenated organic chemicals by aquifer material. 2. Intraparticle diffusion. Environ Sci Technol 1991; 25: 1237–1249.

    Article  CAS  Google Scholar 

  65. Steinberg SM, Pignatello JJ, Sawhney BL. Persistence of 1,2-dibromoethane in soils: entrapment in intraparticle micropores. Environ Sci Technol 1987; 21: 1201–1208.

    Article  CAS  Google Scholar 

  66. Grathwohl, P. Auswirkungen der Lösungs-and Desorptionskinetik auf die Bioverfügbarkeit organischer Schadstoffe. In: Knorr C, von Schell T. eds. Mikrobieller Schadstoffabbau. Braunschweig: Vieweg, 1997: 15–33.

    Chapter  Google Scholar 

  67. Fortnagel P, Harms H, Wittich R-M et al. Cleavage of dibenzofuran and dibenzop-dioxin ring systems by a Pseudomonas bacterium. Naturwissenschaften 1989; 76: 222–223.

    Article  CAS  Google Scholar 

  68. Strubel V, Rast HG, Fietz W et al. Enrichment of dibenzofuran utilizing bacteria with co-metabolic potential toward dibenzodioxin and other anellated aromatics. FEMS Microbiol Lett 1989; 58: 233–238.

    Article  CAS  Google Scholar 

  69. Wittich R-M, Wilkes H, Sinnwell V et al. Metabolism of dibenzo-p-dioxin by Spingomonas sp. strain RW1. Appl Environ Microbiol 1992; 58:1005-tolo.

    Google Scholar 

  70. Monna L, Omori T, Kodama T. Microbial degradation of dibenzofuran, fluorene, and dibenzo-p-dioxin by Staphylococcus auriculans DBF63. Appl Environ Microbiol 1993; 59: 285–289.

    CAS  Google Scholar 

  71. Garcia JM, Harms H. Influence of the nonionic surfactant Brij 35 on the bioavailability of solid and sorbed dibenzofuran. submitted for publication.

    Google Scholar 

  72. Beurskens JEM, Toussaint M, de Wolf J et al. Dehalogenation of chlorinated dioxins by an anaerobic microbial consortium from sediment. Environ Toxicol Chem 1995; 14: 939–943.

    Google Scholar 

  73. Hatzinger PB, Alexander M. Effect of aging of chemicals in soil on their biodegradability and extractability. Environ Sci Technol 1995; 29: 537–545.

    Google Scholar 

  74. Guerin WF, Boyd SA. Differential bioavailability of soil-sorbed naphthalene to two bacterial strains. Appl Environ Microbiol 1992; 58: 1142–1152.

    Google Scholar 

  75. Brzuzy LP, Hites RA. Estimating the atmospheric deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans from soil. Environ Sci Technol 1995; 29: 2090 2098.

    Google Scholar 

  76. Freeman RA, Schroy JM. Comparison of the rate of TCDD transport at Times Beach and at Eglin AFB. Chemosphere 1989; 18: 1305–1312.

    Article  Google Scholar 

  77. Hagenmaier H, She J, Lindig C. Persistence of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in contaminated soil at Maulach and Rastatt in southwest Germany. Chemosphere 1992; 25: 1449-1456.

    Google Scholar 

  78. Homberger E, Reggiani G, Sambeth J et al. The Seveso accident: its nature, extent and consequences. Ann Occup Hyg 1979; 22:327-370.

    Google Scholar 

  79. Helling CS. Pesticide mobility in soils II. Applications of soil thin-layer chromatography. Soil Sci Soc Amer Proc 1971; 35: 737–748.

    Article  CAS  Google Scholar 

  80. Matsumura F, Benezet HJ. Studies on the bioaccumulation and microbial degradation of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Environ Health Perspectives 1973; 5: 253–257.

    Google Scholar 

  81. Orazio CE, Kapila S, Puri RK et al. Persistence of chlorinated dioxins and furans in the soil environment. Chemosphere 1992; 25: 1469–1474.

    Article  CAS  Google Scholar 

  82. Paustenbach DJ, Wenning R, Lau V et al. Recent developments on the hazards posed by 2,3,7,8-tetrachloro-p-dioxin in soil: implications for setting risk-based cleanup levels at residential and industrial sites. J Toxicol Environ Health 1992; 36x03–149.

    Google Scholar 

  83. Puri RK, Clevenger TE, Kapila S et al. Studies of parameters affecting translocation of tetrachlorodibenzo-p-dioxin in soil. Chemosphere 1989; 18: 1291–1296.

    Article  Google Scholar 

  84. Yanders AF, Orazio CE, Puri RK et al. On translocation of 2,3,7,8-tetrachlorodibenzo-p-dioxin: time dependent analysis at the Times Beach experimental site. Chemosphere 1989; 19: 429–432.

    Google Scholar 

  85. Freeman RA, Schroy JM. Environmental mobility of dioxins. In: Bahner RC and Hansen DJ, eds. Aquatic Toxicology and Hazard Assessment: Eighth Symposium, ASTM STP 891. Philadelphia: American Society for Testing and Materials, 1985:422-439.

    Google Scholar 

  86. Murphy BL. Modeling the leaching and transport of 2,3,7,8-TCDD from incinerator ash from landfills. Chemosphere 1989; 19: 433–438.

    Google Scholar 

  87. Kapila S, Yanders AF, Orazio CE et al. Field and laboratory studies on the movement and fate of tetrachlorodibenzo-p-dioxin in soil. Chemosphere 1989; 18: 1297 1304.

    Google Scholar 

  88. McCarthy JF, Zachara JM. Subsurface transport of contaminants. Environ Sci Technol 1989; 23: 496–502.

    Google Scholar 

  89. Bellin CA, Rao PSC. Impact of bacterial biomass on contaminant sorption and transport in a subsurface soil. Appl Environ Microbiol 1993; 591813–1820.

    Google Scholar 

  90. Lindqvist R, Enfield CG. Biosorption of dichlorodiphenyltrichloroethane and hexachlorobenzene in groundwater and its implications for facilitated transport. Appl Environ Microbiol 1992; 58: 2211–2218.

    Google Scholar 

  91. Pereira WE, Rostad CE, Sisak ME. Geochemical investigations of polychlorinated dibenzo-p-dioxins in the subsurface environment at an abandoned wood treatment facility. Environ Tox Chem 1985; 4: 629–639.

    CAS  Google Scholar 

  92. Kearney PC, Woolson EA, Isensee AR et al. Tetrachlorodibenzodioxin in the environment: sources, fate, and decontamination. Environ Health Perspectives 1973; 5: 273–277.

    Google Scholar 

  93. Young AL; Thalken CH, Arnold EL et al. Technical Report USAFA-TR-76,18 USAF Academy, Boulder, Colorado 1976.

    Google Scholar 

  94. Young, AL, Thalken CH, Cairney WJ. Report OEHL-TR-79–169 USAF Occup Environmental Health Laboratory, Brooks Air Force Base. Texas 1979.

    Google Scholar 

  95. Hutzinger O. Dioxin-Ökochemie. Expositions-and Risikoanalyse, Grenzwertermittlung. Chemie and Fortschritt 1985; 1/1985:26-34.

    Google Scholar 

  96. McLachlan MS, Sewart AP, Bacon JR et al. Persistence of PCDD/Fs in a sludge-amended soil. Environ Sci Technol 1996; 30: 2567–2571.

    Article  CAS  Google Scholar 

  97. Brodsky J, Brodesser J, Bauer C et al. The environmental fate of six existing chemicals in laboratory tests. Chemosphere 1997; 34: 515–538.

    Google Scholar 

  98. Muir DCG, Yarechewski AL, Corbet RL et al. Laboratory and field studies on the fate of 1,3,6,8-tetrachlorodibenzo-p-dioxin in soil and sediments. J Agric Food Chem 1985; 33:5i8-523.

    Google Scholar 

  99. Mackay D, Shiu WY, Ma KC. 1992. Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals. Vol II - Polynuclear Aromatic Hydrocarbons, Polychlorinated Dioxins and Dibenzofurans; Lewis Publishers, Boca Raton, FL.

    Google Scholar 

  100. Jackson AP, Eduljee GH. An assessment of the risks associated with PCDDs and PCDFs following the application of sewage sludge to agricultural land in the UK. Chemosphere 1994; 29: 2523–2543.

    Google Scholar 

  101. Adriaens P, Grbic-Galic D. Reductive dechlorination of PCDD/F by anaerobic cultures and sediments. Chemosphere 1994; 292253-2259.

    Google Scholar 

  102. Parsons JR. Influence of suspended sediment on the biodegradation of chlorinated dibenzo-p-dioxins. Chemosphere 1992; 25:1973-1980.

    Google Scholar 

  103. van der Meer JR, de Vos WM, Harayama S et al. Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev 1992; 56: 677–694.

    Google Scholar 

  104. Timmis KN, Rojo F, Ramos JL. Design of new pathways for the catabolism of environmental pollutants. In Kamely D, Chakrabarty A, Omenn, GS, eds. Biotechnology and Biodegradation. The Woodlands, TX: Portfolio Publishing Co., 1990: 61–80.

    Google Scholar 

  105. Dagley S. In: Gibson DT, ed. Microbial Degradation of Aliphatic Hydrocarbons. New York: Marcel Dekker, 1984.

    Google Scholar 

  106. Kaupp H, Towara J, McLachlan MS. Distribution of polychlorinated dibenzo-pdioxins and dibenzofurans in atmospheric particulate matter with respect to particle size. Atmos Environ 1994; 28:585-593.

    Google Scholar 

  107. Schumacher W, Holliger C. The proton/electron ratio of the menaquinone-dependent electron transport from dihydrogen to tetrachloroethene in “Dehalobacter restrict us”. J Bacteriol 1996; 1782328-2333.

    Google Scholar 

  108. Thauer RK, Jungermann K, Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 1977; 41: 100–180.

    CAS  Google Scholar 

  109. Tiehm A. Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl Environ Microbiol 1994; 60: 258–263.

    CAS  Google Scholar 

  110. Liu Z, Jacobson AM, Luthy RG. Biodegradation of naphthalene in aqueous nonionic surfactant systems. Appl Environ Microbiol 1995; 61: 145–151.

    CAS  Google Scholar 

  111. Volkering F, Breure AM, van Andel JG et al. Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Appl Environ Microbiol 1995; 61: 1699–1705.

    CAS  Google Scholar 

  112. Tros ME, Schraa G, Zehnder AJB. Transformation of low concentrations of 3chlorobenzoate by Pseudomonas sp. strain B13: kinetics and residual concentrations. Appl Environ Microbiol 1996; 62: 437–442.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Harms, H. (1998). Bioavailability of Dioxin-Like Compounds for Microbial Degradation. In: Wittich, RM. (eds) Biodegradation of Dioxins and Furans. Environmental Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06068-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06068-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-06070-4

  • Online ISBN: 978-3-662-06068-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics