Skip to main content

The Regulation of Carbon Metabolism in Filamentous Fungi

  • Chapter
Biochemistry and Molecular Biology

Part of the book series: The Mycota ((MYCOTA,volume 3))

Abstract

Carbon catabolite repression refers to the mechanism whereby energetically favourable repressing carbon sources are used preferentially to less readily metabolized carbon sources due to reduced synthesis of enzymes for the utilization of the latter in the presence of the former. The best-studied cases of carbon catabolite repression, at the genetic, biochemical and molecular level are in Escherichia coli, where, at the level of the gene promoter, there is a sophisticated molecular understanding of the mechanism, and of its interaction with the pathway-specific induction mechanism for several operons, in particular that for lactose utilization, although new information is constantly emerging (see Stulke and Hillen 1999, for review). However, there is neither reason a priori nor evidence a posteriori to suggest that the mechanism should be conserved between prokaryotes and eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdallah BM, Simoes T, Fernandes AR, Strauss J, Seiboth B, Sa-Correia I, Kubicek CP (2000) Glucose does not activate the plasma-membrane-bound H+-ATPase but affects pmaA transcript abundance in Aspergillus nidulans. Arch Microbiol 174:340–345

    Article  PubMed  CAS  Google Scholar 

  • Agger T, Petersen JB, O’Connor SM, Murphy RL, Kelly JM, Nielsen J (2002) Physiological characterisation of recombinant Aspergillus nidulans strains with different creA genotypes expressing A. oryzae alpha-amylase. J Biotechnol 92:279–285

    Article  PubMed  CAS  Google Scholar 

  • Arst HN (1981) Aspects of the control of gene expression in fungi. Symp Soc Gen Microbiol 31:131–160

    Google Scholar 

  • Arst HN, Bailey CR (1977) The regulation of carbon metabolism in Aspergillus nidulans. In: Smith JE, Pateman JA (eds) Genetics and physiology of Aspergillus nidulans. Academic Press, London, pp 131–146

    Google Scholar 

  • Arst HN, Cove DJ (1973) Nitrogen metabolite repression in Aspergillus nidulans. Mol Gen Genet 126:111–141

    Article  PubMed  CAS  Google Scholar 

  • Arst HN, MacDonald DW (1975) A gene cluster in Aspergillus nidulans with an internally located cis-acting regulatory region. Nature 254:26–34

    Article  PubMed  CAS  Google Scholar 

  • Arst HN, Tollervey D, Dowzer CEA, Kelly JM (1990) An inversion truncating the creA gene of Aspergillus nidulans results in carbon catabolite repression. Mol Microbiol 4:851–854

    Article  PubMed  CAS  Google Scholar 

  • Bailey CR, Arst HN (1975) Carbon catabolite repression in Aspergillus nidulans. Eur J Biochem 51:573–577

    Article  PubMed  CAS  Google Scholar 

  • Bautista LF, Aleksenko A, Hentzer M, Santerre-Henriksen A, Nielsen J (2000) Antisense silencing of the creA gene in Aspergillus nidulans. Appl Environ Microbiol 66:4579–4581

    Article  PubMed  CAS  Google Scholar 

  • Boase NA, Lockington RA, Adams JRJ, Rodbourn L, Kelly JM (2003) Molecular characterization and analysis of the acrB gene of Aspergillus nidulans, a gene identified by genetic interaction as a component of the regulatory network that includes the CreB deubigui-tinating enzyme. Genetics, 164:95–104

    PubMed  CAS  Google Scholar 

  • Cazelle B, Pokorska A, Hull E, Green PM, Stanway G, Scazzocchio C (1998) Sequence, exon-intron organization, transcription and mutational analysis of prnA, the gene encoding the transcriptional activator of the prn gene cluster in Aspergillus nidulans. Mol Microbiol 28:355–370

    Article  PubMed  CAS  Google Scholar 

  • Cubero B, Scazzocchio C (1994) Two different, adjacent and divergent zinc finger binding sites are necessary for CreA mediated carbon catabolite repression in the proline gene cluster of Aspergillus nidulans. EMBO J 13:407–415

    PubMed  CAS  Google Scholar 

  • Cubero B, Gomez D, Scazzocchio C (2000) Metabolite repression and inducer exclusion in the proline utilization gene cluster of Aspergillus nidulans. J Bacteriol 182:233–235

    Article  PubMed  CAS  Google Scholar 

  • Cziferszsky A, Mach R, Cubicek CP (2002) Phosphorylation positively regulates DNA binding by the carbon catabolite repressor Crel of Hypocrea jecorina (Trichoderma reesei). JBC 277:14688–14694

    Article  CAS  Google Scholar 

  • D’Andrea A, Pellman D (1998) Deubiquitinating enzymes: a new class of biological regulators. Crit Rev Biochem Mol Biol 33:337–352

    Article  PubMed  Google Scholar 

  • Davis MA, Hynes MJ (1991) Regulatory circuits in Aspergillus nidulans. In: Bennett JW, Lasure LL (eds) More gene manipulation in fungi. Academic Press, London, pp 151–189

    Chapter  Google Scholar 

  • De la Serna I, Ng D, Tyler BM (1999) Carbon regulation of ribosomal genes in Neurospora crassa occurs by a mechanism which does not require Cre-1, the homologue of the Aspergillus carbon catabolite repressor, CreA. Fungal Genet Biol 26:253–269

    Article  PubMed  Google Scholar 

  • Dowzer CEA, Kelly JM (1989) Cloning of creA from Aspergillus nidulans: a gene involved in carbon catabolite repression. Curr Genet 15:457–459

    Article  PubMed  CAS  Google Scholar 

  • Dowzer CEA, Kelly JM (1991) Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Mol Cell Biol 11:5701–5709

    PubMed  CAS  Google Scholar 

  • Drysdale MR, Kolze SE, Kelly JM (1993) The Aspergillus niger carbon catabolite repressor encoding gene, creA. Gene 130:241–245

    Article  PubMed  CAS  Google Scholar 

  • Espeso EA, Penalva MA (1994) In vitro binding of the two-finger repressor CREA to several consensus and non-consensus sites at the ipnA upstream region is context dependent. FEBS Lett 342:43–48

    Article  PubMed  CAS  Google Scholar 

  • Espeso EA, Fernandez-Canon JM, Penalva MA (1995) Carbon regulation of penicillin biosynthesis in Aspergillus nidulans - a minor effect of mutations in creB and creC. FEMS Microbiol Lett 126:63–67

    Article  PubMed  CAS  Google Scholar 

  • Felenbok B, Flipphi M, Nikolaev I (2001) Ethanol catabolism in Aspergillus nidulans: a model system for studying gene regulation. Prog Nucleic Acid Res Mol Biol 69:149–204

    Article  PubMed  CAS  Google Scholar 

  • Flipphi M, Mathieu M, Cirpus I, Panozzo C, Felenbok B (2001) Regulation of the aldehyde dehydrogenase gene (aldA) and its role in the control of the coinducer level necessary for induction of the ethanol utilization pathway in Aspergillus nidulans. J Biol Chem 276: 6950–6958

    Article  PubMed  CAS  Google Scholar 

  • Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334

    PubMed  CAS  Google Scholar 

  • Geever RF, Huiet L, Baum JA, Tyler BM, Patel VB, Rutledge BJ, Case ME, Giles NH (1989) DNA sequence, organization and regulation of the qa gene cluster in Neu-rospora crassa. J Mol Biol 207:15–34

    Article  PubMed  CAS  Google Scholar 

  • Gomez D, Cubero B, Cecchetto G, Scazzocchio C (2002) PrnA, a Zn(2)Cys(6) activator with a unique DNA recognition mode, requires inducer for in vivo binding. Mol Microbiol 44:585–597

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez R, Gavrias V, Gomez D, Scazzocchio C, Cubero B (1997) The integration of nitrogen and carbon catabolite repression in Aspergillus nidulans requires the GATA factor AreA and an additional positive-acting element ADA. EMBO J 16:2937–2944

    Article  PubMed  CAS  Google Scholar 

  • Hansen-Hagge TE, Janssen JWG, Hameister H, Papa FR, Zechner U, Seriu T, Jauch A, Becke D, Hochstrasser M, Bartram CR (1998) An evolutionarily conserved gene on chromosome 5q33-q34, UBH1, encodes a novel deubiquitinating enzyme. Genomics 49:411–418

    Article  PubMed  CAS  Google Scholar 

  • Hicks J, Lockington RA, Strauss J, Dieringer D, Kubicek CP, Kelly J, Keller N (2001) Reo A has pleiotropic effects on Aspergillus nidulans cellular development. Mol Microbiol 39:1482–1493

    Article  PubMed  CAS  Google Scholar 

  • Hynes MJ (1970) Induction and repression of amidase enzymes in Aspergillus nidulans. J Bacteriol 103:482–487

    PubMed  CAS  Google Scholar 

  • Hynes MJ (1994) Regulation of acetamide utilization. In: Martinelli S, Kinghorn JR(eds) (1994) Aspergillus: 50 years on. Progress in industrial microbiology, vol 29. Elsevier, Amsterdam, pp 279–321

    Google Scholar 

  • Hynes MJ, Kelly JM (1977) Pleiotropic mutants of Aspergillus nidulans altered in carbon metabolism. Mol Gen Genet 150:193–204

    Article  PubMed  CAS  Google Scholar 

  • Ihnen M, Thrane C, Pentilla M (1996) The glucose repressor gene, crel of Trichoderma reesei—isolation of a full length and truncated mutant form. Mol Gen Genet 251:451–460

    Google Scholar 

  • Jekosch K, Kueck U (2000a) Glucose dependent transcriptional expression of the crel gene in Acremonium chrysogenum strains showing different levels of cephalosporin C production. Curr Genet 37:388–395

    Article  PubMed  CAS  Google Scholar 

  • Jekosch K, Kueck U (2000b) Loss of glucose repression in an Acremonium chrysogenum beta-lactam producer strain and its restoration by multiple copies of the crel gene. Appl Microbiol Biotechnol 54:556–563

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki L, Farres A, Aguirre J (1995) Aspergillus nidulans mutants affected in acetate metabolism isolated as lipid nonutilizers. Exp Mycol 19:81–85

    Article  PubMed  CAS  Google Scholar 

  • Kelly JM (1980) Pleiotropic mutants of Aspergillus nidulans affected in carbon metabolism. PhD Thesis, La Trobe University, Australia

    Google Scholar 

  • Kelly JM, Hynes MJ (1977) Increased and decreased sensitivity to carbon catabolite repression of enzymes of acetate metabolism in mutants of Aspergillus nidulans. Mol Gen Genet 156:87–92

    Article  PubMed  CAS  Google Scholar 

  • Klein CJL, Olsson L, Nielsen J (1998) Glucose control in Saccharomyces cerevisiae - the role of MIG1 in metabolic functions. Microbiology 144:13–24

    Article  PubMed  CAS  Google Scholar 

  • Kulmberg P, Prange T, Mathieu M, Sequeval D, Scazzocchio C, Felenbok B (1991) Correct intron splicing generates a new type of putative zinc finger domain in a transcriptional activator of Aspergillus nidulans. FEBS Lett 280:11–16

    Article  Google Scholar 

  • Kulmberg P, Sequeval D, Lenouvel F, Mathieu M, Felenbok B (1992a) Identification of the promoter region involved in the autoregulation of the transcriptional activator ALCR in Aspergillus nidulans. Mol Cell Biol 12:1932–1939

    Google Scholar 

  • Kulmberg P, Sequeval D, Lenouval F, Mathieu M, Felenbok B (1992b) Specific binding sites for the activator protein, ALCR, in the alcA promoter of the ethanol regulon of Aspergillus nidulans. JBC 267:21146–21153

    Google Scholar 

  • Kulmberg P, Mathieu M, Dowzer C, Kelly J, Felenbok, B (1993) Specific binding sites in the alcR and ale A pro-motors of the ethanol regulon for the CREA repressor mediating carbon catabolite repression in Aspergillus nidulans. Mol Microbiol 7:847–857

    Article  Google Scholar 

  • Lamb HK, Newton GH, Levett LJ, Cairns E, Roberts CF, Hawkins AR (1996) The QutA activator and QutR repressor proteins of Aspergillus nidulans interact to regulate transcription of the quinate utilization genes. Microbiology 142:1477–1490

    Article  PubMed  CAS  Google Scholar 

  • Levett LJ, Si-Hoe SM, Liddle S, Wheeler K, Smith D, Lamb HK, Newton GH, Coggins JR, Hawkins AR (2000) Identification of domains responsible for signal recognition and transduction within the QUTR transcription repressor protein. Biochem J 350:189–197

    Article  PubMed  CAS  Google Scholar 

  • Lockington RA, Kelly JM (2001) Carbon catabolite repression in Aspergillus nidulans involves deubiquitination. Mol Microbiol 40:1311–1321

    Article  PubMed  CAS  Google Scholar 

  • Lockington RA, Kelly JM (2002) The WD40-repeat protein CreC interacts with and stabilizes the deubiquitinating enzyme CreB in vivo in Aspergillus nidulans. Mol Microbiol 43:1173–1182

    Article  PubMed  CAS  Google Scholar 

  • Lockington RA, Sealy-Lewis HM, Scazzocchio C, Davies RW (1985) Cloning and characterization of the ethanol utilization regulon of Aspergillus nidulans. Gene 33:137–149

    Article  PubMed  CAS  Google Scholar 

  • Lockington RA, Scazzocchio C, Sequeval D, Mathieu M, Felenbok B (1987) Regulation of alcR, the positive regulatory gene of the ethanol utilization regulon of Aspergillus nidulans. Mol Microbiol 1:275–281

    Article  PubMed  CAS  Google Scholar 

  • Lockington RA, Borlace GN, Kelly JM (1997) Pyruvate decarboxylase and anaerobic survival in Aspergillus nidulans. Gene 191:61–67

    Article  PubMed  CAS  Google Scholar 

  • Lockington RA, Rodbourn L, Barnett S, Carter CJ, Kelly JM (2002) Regulation by carbon and nitrogen sources of a family of cellulases in Aspergillus nidulans. Fungal Genet Biol 37:189–195

    Article  CAS  Google Scholar 

  • Martin JE, Casqueiro J, Kosalkova K, Marcos AT, Gutierrez S (1999) Penicillin and cephalosporin biosynthesis: mechanism of carbon catabolite regulation of penicillin production. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 75:21–31

    Article  CAS  Google Scholar 

  • Martinelli S, Kinghorn JR(eds) (1994) Aspergillus: 50 years on. Progress in industrial microbiology, vol 29. Elsevier, Amsterdam

    Google Scholar 

  • Mathieu M, Felenbok B (1994) The Aspergillus nidulans CREA protein mediates glucose repression of the ethanol regulon at various levels through competition with the ALCR-specific transactivator. EMBO J 13: 4022–4027

    PubMed  CAS  Google Scholar 

  • Mathieu M, Fillinger S, Felenbok B (2000) In vivo studies of upstream regulatory cis-acting elements of the alcR gene encoding the transactivator of the ethanol regulon in Aspergillus nidulans. Mol Microbiol 36: 123–131

    Article  PubMed  CAS  Google Scholar 

  • McCullough W, Payton MA, Roberts CF (1977) Carbon metabolism in Aspergillus nidulans. In: Smith JE, Pateman JA (eds) Genetics and physiology of Aspergillus. Academic Press, London, pp 97–129

    Google Scholar 

  • Neer EJ, Schmidt CJ, Nambudripad R, Smith TF (1994) The ancient regulatory-protein family of WD-repeat proteins. Nature 371:297–300

    Article  PubMed  CAS  Google Scholar 

  • Nehlin J, Ronne H (1990) Yeast MIG1 repressor is related to the mammalian early growth response and Wilms’ tumor finger proteins. EMBO J 9:2891–2898

    PubMed  CAS  Google Scholar 

  • Nehlin JO, Carlberg M, Ronne H (1991) The control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response. EMBO J 10:3373–3377

    PubMed  CAS  Google Scholar 

  • Nikolaev I, Lenouvel F, Felenbok B (1999) Unique DNA binding specificity of the binuclear zinc AlcR activator of the ethanol utilization pathway in Aspergillus nidulans. J Biol Chem 274:9795–9802

    Article  PubMed  CAS  Google Scholar 

  • O’Connor SM (1999) Molecular analysis of genes involved in carbon catabolite repression in Aspergillus nidulans. PhD Thesis, University of Adelaide, Australia

    Google Scholar 

  • Orejas M, MacCabe AP, Gonzalez JAP, Kumar S, Ramon D (1999) Carbon catabolite repression of the Aspergillus nidulans xlnA gene. Mol Microbiol 31:177–184

    Article  PubMed  CAS  Google Scholar 

  • Orejas M, MacCabe AP, Perez-Gonzalez JA, Kumar S, Ramon D (2001) The wide-domain carbon catabolite repressor CreA indirectly controls expression of the Aspergillus nidulans xlnB gene, encoding the acidic endo-beta-(l,4)-xylanase X-24. J Bacteriol 183:1517–1523

    Article  PubMed  CAS  Google Scholar 

  • Ostling J, Ronne H (1998) Negative control of the Miglp repressor by Snflp-dependent phosphorylation in the absence of glucose. Eur J Biochem 252:162–168

    Article  PubMed  CAS  Google Scholar 

  • Ostling J, Carlberg M, Ronne H (1996) Functional domains in the Migl repressor. Mol Cell Biol 16:753–761

    PubMed  CAS  Google Scholar 

  • Ostling J, Cassart JP, Vandenhaute J, Ronne H (1998) Four hydrophobic amino acid residues in the C-terminal effector domain of the yeast Miglp repressor are important for its in vivo activity. Mol Gen Genet 260: 269–279

    Article  PubMed  CAS  Google Scholar 

  • Panozzo C, Cornillot E, Felenbok B (1998) The CreA repressor is the sole DNA-binding protein responsible for carbon catabolite repression of the alcA gene in Aspergillus nidulans via its binding to a couple of sites. JBC 273:6367–6372

    Article  CAS  Google Scholar 

  • Pateman JA, Doy CH, Olsen JE, Norris U, Creaser EH, Hynes MJ (1983) Regulation of alcohol dehydrogenase and aldehyde dehydrogenase in Aspergillus nidulans. Proc R Soc Lond Ser B 217:243–264

    Article  CAS  Google Scholar 

  • Paulino M, Esperon P, Vega M, Scazzocchio C, Tapia O (2002) Modelling CreA protein-DNA recognition determinants. A molecular dynamics study of fully charged CreA-DNA model in water. Theochem J Mol Struct 580:225–242

    Article  CAS  Google Scholar 

  • Pavletich NP, Pabo CO (1991) Zinc finger-DNA recognition: Crystal structure of a Zif268-DNA complex at 2.1 À. Science 252:809–817

    Article  PubMed  CAS  Google Scholar 

  • Pokorska A, Drevet C, Scazzocchio C (2000) The analysis of the transcriptional activator PrnA reveals a tripartite nuclear localisation sequence. JMB 298:585–596

    Article  CAS  Google Scholar 

  • Rechsteiner M, Rogers S (1996) PEST sequences and regulation by proteolysis. Trends Biochem Sci 21:267–271

    PubMed  CAS  Google Scholar 

  • Romano AH, Kornberg HL (1968) Regulation of sugar utilisation by Aspergillus nidulans. Biochim Biophys Acta 158:491–493

    Article  PubMed  CAS  Google Scholar 

  • Romano AH, Kornberg HL (1969) Regulation of sugar uptake by Aspergillus nidulans. Proc R Soc Lond Ser B 173:475–490

    Article  CAS  Google Scholar 

  • Rotin D, Staub O, Haguenauer-Tsapis R (2000) Ubiquitina-tion and endocytosis of plasma membrane proteins: role of Nedd4/Rsp5p family of ubiquitin-protein ligases. J Membr Biol 176:1–17

    PubMed  CAS  Google Scholar 

  • Ruijter GJG, Panneman H, Vandenbroeck HC, Bennett JM, Visser J (1996) Characterisation of Aspergillus frAl mutant—hexose phosphorylation and apparent lack of involvement of hexokinase in glucose repression. FEMS Microbiol Lett 139:223–228

    PubMed  CAS  Google Scholar 

  • Ruijter GJG, Vanhanen SA, Gielkens MMC, Vandevondervoort PJI, Visser J (1997) Isolation of Aspergillus niger creA mutants and effects of the mutations on expression of arabinases and L-arabi-nose catabolic enzymes. Microbiology 143:2991–2998

    Article  PubMed  CAS  Google Scholar 

  • Sakai A, Shimizu Y, Hishinuma F (1988) Isolation and characterization of mutants which show an oversecretion phenotype in Saccharomyces cerevisiae. Genetics 119: 499–506

    PubMed  CAS  Google Scholar 

  • Sakai A, Shimizu Y, Kondou S, Chibazakura T, Hishinuma F (1990) Structure and molecular analysis of RGR1, a gene required for glucose repression in Saccharomyces cerevisiae. Mol Cell Biol 10:4130–4138

    PubMed  CAS  Google Scholar 

  • Scazzocchio C, Gavrias V, Cubero B, Panozzo C, Mathieu M, Felenbok B (1995) Carbon catabolite repression in Aspergillus nidulans - a review. Can J Bot Rev Can Bot 73:S160-S166

    Article  Google Scholar 

  • Screen S, Bailey A, Charnley K, Cooper R, Clarkson J (1997) Carbon regulation of the cuticle-degrading enzyme PR1 from Metarhizium anisopliae may involve a trans-acting DNA-binding protein CRR1, a functional equivalent of the Aspergillus nidulans CREA protein. Curr Genet 31:511–518

    Article  PubMed  CAS  Google Scholar 

  • Shroff RA (1997) Mutational analysis of creA, the mediator of carbon catabolite repression in Aspergillus nidulans. PhD Thesis, University of Adelaide, Australia

    Google Scholar 

  • Shroff RA, Lockington RA, Kelly JM (1996) Analysis of mutations in the creA gene involved in carbon catabolite repression in Aspergillus nidulans. Can J Microbiol 42:950–959

    Article  PubMed  CAS  Google Scholar 

  • Shroff RA, O’Connor SM, Hynes MJ, Lockington RA, Kelly JM (1997) Null alleles of creA, the regulator of carbon catabolite repression in Aspergillus nidulans. Fungal Genet Biol 22:28–38

    Article  PubMed  CAS  Google Scholar 

  • Springael JY, Nikko E, Andre B, Marini AM (2002) Yeast Npi3/Brol is involved in ubiquitin-dependent control of permease trafficking. FEBS Lett 517:103–109

    Article  PubMed  CAS  Google Scholar 

  • Strauss J, Mach RL, Zeilinger S, Hartler G, Stoffler G, Wolschek M, Kubicek CP (1995) Crel, the carbon catabolite repressor protein from Trichoderma reesei. FEBS Lett 376:103–107

    Article  PubMed  CAS  Google Scholar 

  • Strauss J, Horvath HK, Abdallah BM, Kindermann J, Mach RL, Kubicek CP (1999) The function of CreA, the carbon catabolite repressor of Aspergillus nidulans, is regulated at the transcriptional and post-transcriptional level. Mol Microbiol 32:169–178

    Article  PubMed  CAS  Google Scholar 

  • Stulke J, Hillen W (1999) Carbon catabolite repression in bacteria. Curr Opin Microbiol 2:195–201

    Article  PubMed  CAS  Google Scholar 

  • Stulke J, Hillen W (2000) Regulation of carbon catabolism in Bacillus species. Annu Rev Microbiol 54:849–880

    Article  PubMed  CAS  Google Scholar 

  • Takashima S, Nakamura A, Hidaka M, Masaki H, Uozumi T (1998) Isolation of the ereA gene from the cellulolytic fungus Humicola grisea and analysis of CreA binding sites upstream from the cellulase genes. Biosci Biotechnol Biochem 62:2364–2370

    Article  PubMed  CAS  Google Scholar 

  • Todd RB, Lockington RA, Kelly JM (2000) The Aspergillus nidulans creC gene involved in carbon catabolite repression encodes a WD40 repeat protein. Mol Gen Genet 263:561–570

    Article  PubMed  CAS  Google Scholar 

  • Treitel MA, Carlson M (1995) Repression by Ssn6p-Tuplp is directed by Miglp, a repressor/activator protein. Proc Natl Acad Sci USA 92:3132–3136

    Article  PubMed  CAS  Google Scholar 

  • Tudzynski B, Liu S, Kelly JM (2000) Carbon catabolite repression in plant pathogenic fungi: isolation and characterization of the Gibberella fujikuroi and Botrytis cinerea creA genes. FMS Microbiol Lett 184:9–15

    Article  CAS  Google Scholar 

  • Tzamarias D, Struhl K (1995) Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tupl corepressor to differentially regulated promoters. Genes Dev 9: 821–831

    Article  PubMed  CAS  Google Scholar 

  • Vanderveen P, Ruijter GJG, Visser J (1995) An extreme creA mutation in Aspergillus nidulans has severe effects on D-glucose utilization. Microbiology 141:2301–2306

    Article  CAS  Google Scholar 

  • Van der Voorn L, Ploegh H.L (1992) The WD-40 repeat. FEBS Lett 307:131–134

    Article  PubMed  Google Scholar 

  • Van Kuyk PA, de Groot MJL, Ruijter GJG, de Vries RP, Visser J (2001) The Aspergillus niger D-xylulose kinase gene is co-expressed with genes encoding arabinan degrading enzymes, and is essential for growth on D-xylose and L-arabinose. Eur J Biochem 268:5414–5423

    Article  Google Scholar 

  • Vautard G, Cotton P, Fevre M (1999) The glucose repressor CRE1 of Sclerotinia sclerotiorum is functionally related to CreA from Aspergillus nidulans but not to the Mig proteins from Saccharomyces cerevisiae. FEBS Lett 453:54–58

    Article  PubMed  CAS  Google Scholar 

  • Vautard-Mey G, Fevre M (2000) Mutation of a putative AMPK phosphorylation site abolishes the repressor activity but not the nuclear targeting of the fungal glucose regulator CRE1. Curr Genet 37:328–332

    Article  PubMed  CAS  Google Scholar 

  • Vautard-Mey G, Cotton P, Fevre M (1999) Expression and compartmentation of the glucose repressor CRE1 from the phytopathogenic fungus Sclerotinia sclerotiorum. Eur J Biochem 266:252–259

    Article  PubMed  CAS  Google Scholar 

  • Waterman MS, Smith TF, Beyer WA (1976) Some biological sequence metrics. Adv Math 20:367–387

    Article  Google Scholar 

  • Wilson RA, Arst HN (1998) Mutational analysis of AREA, a transcriptional activator mediating nitrogen metabolite repression in Aspergillus nidulans and a member of the streetwise GATA family of transcription factors. Microbiol Mol Biol Rev 62:586

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kelly, J.M. (2004). The Regulation of Carbon Metabolism in Filamentous Fungi. In: Brambl, R., Marzluf, G.A. (eds) Biochemistry and Molecular Biology. The Mycota, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06064-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06064-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07652-7

  • Online ISBN: 978-3-662-06064-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics