Skip to main content

Bird Migration Speed

  • Conference paper
Avian Migration

Abstract

Migrating birds alternate between two main phases of (1) flight when distance is covered and energy (fuel) is consumed, and (2) fuel deposition when energy is accumulated by intensive foraging. Fuel deposition takes place during stopover periods between flights as well as during a premigratory fuelling period before the initial flight. Thus, the total duration of migration T is the sum of flight time T flight and fuel deposition time T dep:

$$T = {T_{flight}} + {T_{dep}}.$$
(1)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alerstam T (1991) Bird flight and optimal migration. Trends Ecol Evol 6: 210–215

    Article  PubMed  CAS  Google Scholar 

  • Alerstam T (2000) Bird migration performance on the basis of flight mechanics and trigonome try. In: Domenici P, Blake RW (eds) Biomechanics in animal behaviour. Bios Scientific, Oxford, pp 105–124

    Google Scholar 

  • Alerstam T, Gudmundsson GA (1999) Migration patterns of tundra birds: tracking radar observations along the Northeast passage. Arctic 52: 346–371

    Google Scholar 

  • Alerstam T, Gudmundsson GA, Larsson B (1993) Flight tracks and speeds of Antarctic and Atlantic seabirds: radar and optical measurements. Philos Trans R Soc Lond B 340: 55–67

    Article  Google Scholar 

  • Alerstam T, Hedenström A (1998) The development of bird migration theory. J Avian Biol 29: 343–369

    Article  Google Scholar 

  • Alerstam T, Lindström A (1990) Optimal migration: the relative importance of time, energy and safety. In: Gwinner E (ed) Bird migration: physiology and ecophysiology. Springer, Berlin Heidelberg New York, pp 331–351

    Chapter  Google Scholar 

  • Baudinette RV, Schmidt-Nielsen K (1974) Energy cost of gliding flight in herring gulls. Nature 248: 83–84

    Article  Google Scholar 

  • Bensch S, Nielsen B (1999) Autumn migration speed of juvenile reed and sedge warblers in relation to date and fat loads. Condor 101: 153–156

    Article  Google Scholar 

  • Berthold P, Bossche W v d, Fiedler W, Gorney E, Kaatz M, Leshem Y, Nowak E, Querner U (2001) Der Zug des Weißstorchs (Ciconia ciconia): eine besondere Zugform auf Grund neuer Ergebnisse. J Ornithol 142: 73–92

    Article  Google Scholar 

  • Both C, Visser ME (2001) Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411: 296–298

    Article  PubMed  CAS  Google Scholar 

  • Drent RH, Daan S (1980) The prudent parent: energetic adjustments in avian breeding. Ardea 68: 225–252

    Google Scholar 

  • Ellegren H (1990) Autumn migration speed in Scandinavian bluethroats, Luscinia s. svecica. Ringing Migr 11: 121–131

    Article  Google Scholar 

  • Ellegren H (1993) Speed of migration and migratory flight lengths of passerine birds ringed during autumn migration in Sweden. Ornis Scand 24: 220–228

    Article  Google Scholar 

  • Fransson T (1995) Timing and speed of migration in North and West European populations of Sylvia warblers. J Avian Biol 26: 39–48

    Article  Google Scholar 

  • Fransson T, Jakobsson S, Johansson P, Kullberg C, Lind J, Vallin A (2001) Magnetic cues trigger extensive refuelling. Nature 414: 35–36

    Article  PubMed  CAS  Google Scholar 

  • Gudmundsson GA, Lindström A, Alerstam T (1991) Optimal fat loads and long-distance flights by migrating knots, Calidris canutus, sanderlings, C. alba, and turnstones, Arenaria interpres. Ibis 133: 140–152

    Article  Google Scholar 

  • Gwinner E (1996) Circadian and circannual programmes in avian migration. J Exp Biol 199: 39–48

    PubMed  Google Scholar 

  • Hake M, Kjellén N, Alerstam T (2001) Satellite tracking of Swedish ospreys, Pandion haliaetus: autumn migration routes and orientation. J Avian Biol 32: 47–56

    Article  Google Scholar 

  • Hedenström A (1993) Migration by soaring or flapping flight in birds: the relative importance of energy cost and speed. Philos Trans R Soc Lond B 342: 353–361

    Article  Google Scholar 

  • Hedenström A, Alerstam T (1995) Optimal flight speed of birds. Philos Trans R Soc Lond B 348: 471–487

    Article  Google Scholar 

  • Hedenström A, Alerstam T (1997) Optimum fuel loads in migratory birds: distinguishing between time and energy minimization. J Theor Biol 189: 227–234

    Article  PubMed  Google Scholar 

  • Hedenström A, Alerstam T (1998) How fast can birds migrate? J Avian Biol 29: 424–432

    Article  Google Scholar 

  • Hedenström A, Pettersson J (1987) Migration routes and wintering areas of willow warblers, Phylloscopus trochilus, ringed in Fennoscandia. Ornis Fenn 64: 137–143

    Google Scholar 

  • Hildén O, Saurola P (1982) Speed of autumn migration of birds ringed in Finland. Ornis Fenn 59: 140–143

    Google Scholar 

  • Houston Al (2000) The strength of selection in the context of migration speed. Proc R Soc Lond B 267: 2393–2395

    Article  CAS  Google Scholar 

  • Jouventin P, Weimerskirch H (1990) Satellite tracking of wandering albatrosses. Nature 343: 746–748

    Article  Google Scholar 

  • Kerlinger P (1989) Flight strategies of migrating hawks. University of Chicago Press, Chicago Kirkwood JK (1983) A limit to metabolisable energy intake in mammals and birds. Comp Biochem Physiol 75A: 1–3

    Google Scholar 

  • Kjellén N, Hake M, Alerstam T (2001) Timing and speed of migration in male, female and juvenile ospreys, Pandion haliaetus, between Sweden and Africa as revealed by field observations, radar and satellite tracking. J Avian Biol 32: 57–67

    Article  Google Scholar 

  • Kokko H (1999) Competition for early arrival in migratory birds. J Anim Ecol 68: 940–950

    Article  Google Scholar 

  • Kvist A, Lindström A (2000) Maximum daily energy intake: it takes time to lift the metabolic ceiling. Physiol Biochem “tool 73: 30–36

    CAS  Google Scholar 

  • Kvist A, Lindström A (2001) Avian gourmands. In: Kvist A (2001) Fuel and fly: adaptations to endurance exercise in migrating birds. PhD ‘Thesis, Lund University, Lund

    Google Scholar 

  • Lasiewski RC, Dawson WR (1967) A re-examination of the relation between standard metabolic rate and body weight in birds. Condor 69: 13–23

    Article  Google Scholar 

  • Lindström A (1991) Maximum fat deposition rates in migrating birds. Ornis Scand 22: 12–19

    Article  Google Scholar 

  • Lindström A, Alerstam T (1992) Optimal fat loads in migrating birds: a test of the time-minimization hypothesis. Am Nat 140: 477–491

    Article  PubMed  Google Scholar 

  • McNamara JM, Welham RK, Houston A (1998) The timing of migration within the context of an annual routine. J Avian Biol 29: 416–423

    Article  Google Scholar 

  • Pennycuick CJ (1969) The mechanics of bird migration. Ibis 111: 525–556

    Article  Google Scholar 

  • Pennycuick Cl (1982) The flight of petrels and albatrosses (Procellariiformes) observed in South Georgia and its vicinity. Philos Trans R Soc Lond B 300: 75–106

    Article  Google Scholar 

  • Pennycuick C] (1989) Bird flight performance: a practical calculation manual. Oxford University Press, Oxford

    Google Scholar 

  • Prince PA, Wood AG, Barton T, Croxall JP (1992) Satellite tracking of wandering albatrosses (Diomedea exulans) in the South Atlantic. Antarct Sci 4: 31–36

    Google Scholar 

  • Pulido F, Berthold P, Mohr G, Querner U (2001) Heritability of the timing of autumn migration in a natural bird population. Proc R Soc Lond B 268: 953–959

    Article  CAS  Google Scholar 

  • Richardson WJ (1978) Timing and amount of bird migration in relation to weather: a review. Oikos 30: 224–272

    Article  Google Scholar 

  • Schaub M, Jenni L (2000a) Fuel deposition of three passerine bird species along the migration route. Oecologia 122: 306–317

    Article  Google Scholar 

  • Schaub M, Jenni L (2000b) Body mass of six long-distance migrant passerine species along the autumn migration route. J Ornithol 141: 441–460

    Google Scholar 

  • Spaar R (1997) Flight strategies of migrating raptors; a comparative study of interspecific variation in flight characteristics. Ibis 139: 523–535

    Article  Google Scholar 

  • Spaar R, Bruderer B (1996) Soaring migration of steppe eagles, Aquila nipalensis, in southern Israel: flight behaviour under various wind and thermal conditions. J Avian Biol 27: 289–301

    Article  Google Scholar 

  • Tickell WLN (2000) Albatrosses. Pica Press, Sussex

    Google Scholar 

  • Weimerskirch H, Guionnet T, Martin J, Shaffer SA, Costa, DP (2000) Fast and fuel efficient? Optimal use of wind by flying albatrosses. Proc R Soc Lond B 267: 1869–1874

    Article  CAS  Google Scholar 

  • Wilson JA (1975) Sweeping flight and soaring by albatrosses. Nature 257: 307–308

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alerstam, T. (2003). Bird Migration Speed. In: Berthold, P., Gwinner, E., Sonnenschein, E. (eds) Avian Migration. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05957-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05957-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07780-7

  • Online ISBN: 978-3-662-05957-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics