Skip to main content

Dynamical Systems and Chaos

  • Chapter
Handbook of Mathematics

Abstract

A dynamical system is a mathematical object to describe the development of a physical, biological or another system from real life depending on time. It is defined by a phase space M, and by a one-parameter family of mappings φ: MM, where t is the parameter (the time). In the following, the phase space is often Rn, a subset of it, or a metric space. The time parameter t is from R (time continuous system) or from Z or from Z+ (time discrete system). Furthermore, it is required for arbitrary xM that

  1. a)

    φ0(x) = x and

  2. b)

    φt(φs(x)) = φt+s(x) for all t, s. The mapping φ1 is denoted briefly by φ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arrowsmith, D.K.; Place, C.M.: An introduction to Dynamical Systems. — Cambridge University Press 1990.

    MATH  Google Scholar 

  2. Falconer, K.: Fractal Geometry. — John Wiley 1990.

    MATH  Google Scholar 

  3. Guckenheimer, J.; Holmes, P.: Non-Linear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. — Springer-Verlag 1990.

    Google Scholar 

  4. Hale, J.; Koçak, H.: Dynamics and Bifurcations. — Springer-Verlag 1991.

    Book  MATH  Google Scholar 

  5. Katok, A.; Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. — Cambridge University Press 1995.

    Book  MATH  Google Scholar 

  6. Kuznetsov, Yu.A.: Elements of Applied Bifurcation Theory. No. 112 in: Applied Mathematical Sciences. — Springer-Verlag 1995.

    Google Scholar 

  7. Leonov, G.A.; Reitmann, V.; Smirnova, V.B.: Non-Local Methods for Pendulum-Like Feedback Systems — B. G. Teubner 1987.

    Google Scholar 

  8. Mané, R.: Ergodic Theory and Differentiate Dynamics. — Springer-Verlag 1994.

    Google Scholar 

  9. Marek, M.; Schreiber, L: Chaotic Behaviour of Deterministic Dissipative Systems. — Cambridge University Press 1991.

    Book  MATH  Google Scholar 

  10. Medved’, M.: Fundamentals of Dynamical Systems and Bifurcations Theory. —Adam Hilger 1992.

    Google Scholar 

  11. Perko, L.: Differential Equations and Dynamical Systems. — Springer-Verlag 1991.

    Book  MATH  Google Scholar 

  12. Pesin, Ya., B.: Dimension Theory in Dynamical Systems: Contemporary Views and Applications. Chicago Lectures in Mathematics. — The University of Chicago Press 1997.

    Book  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bronshtein, I.N., Semendyayev, K.A., Musiol, G., Muehlig, H. (2004). Dynamical Systems and Chaos. In: Handbook of Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05382-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05382-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43491-7

  • Online ISBN: 978-3-662-05382-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics