Skip to main content

Radar Sensor Synergy for Cloud Studies; Case Study of Water Clouds

  • Chapter
Weather Radar

Part of the book series: Physics of Earth and Space Environments ((EARTH))

Abstract

Since the middle of the 1990s the use of radar for cloud profiling gained a lot of momentum because of the large need for reliable data to study the role of non-precipitating clouds in the climate system. High-frequency systems especially, for example, at 35 and 94 GHz, corresponding to about 0.9 and 0.3 cm wavelengths, were exploited for their feasibility to measure the structure of non-precipitating clouds. As a result of several experiments and field campaigns, it was soon realised that radar, although very useful, was not sufficient in revealing all the necessary information. It had to be combined with other sensors, like lidars or radiometers. A particular example is the observation of a low-level water cloud. The water droplets at the cloud base are in many cases too small to be detected by radar, and the radar will only measure part of the vertical profile of the cloud. Combination with an optical instrument like a lidar will then fill the gap. The lidar signal, however, is often absorbed before it reaches the cloud top, whereas the radar has no difficulty in observing the cloud particles there. Radar and lidar are in this case truly complementary instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albrecht, B.A., C.W. Fairall, D.W. Thomson, A.B. White and J.B. Snider, 1990: Surface-based remote sensing of the observed and the adiabatic liquid water content of stratocumulus clouds. Geophys. Res. Lett., 17, 89–92.

    Google Scholar 

  2. Baedi, R.P., J.J.M. de Wit, H.W.J. Russchenberg, J.S. Erkelens and J.P.V. Poiares Baptista, 2000: Estimating the effective radius from radar and lidar based on the Clare’98 data set. Phys. Chem. Earth (B), 25, 1057–1062.

    Article  Google Scholar 

  3. Betts, B.K., 1983: Thermodynamics of mixed stratocumulus: Saturation point budgets. J. Atmos. Sci, 40, 2655–2670.

    Article  Google Scholar 

  4. Boers, R. and R.M. Mitchell, 1994: Absorption feedback in stratocumulus clouds: Influence on cloud top albedo, Tellus. 46A, 229–241.

    Article  Google Scholar 

  5. Boers, R., 1997: Simultaneous retrievals of cloud optical depth and droplet concentration from solar irradiance and microwave liquid water path. J. Geophys. Res, 102, 29881–29891.

    Article  Google Scholar 

  6. CLARA report 2001: Clouds and radiation: intensive observational campaigns in The Netherlands, RIVM, NRP Program, Report 410 200 057.

    Google Scholar 

  7. Clare’98 report: Cloud Lidar and Radar Experiment, Workshop Proceedings,Sept. 1999, WPP-170, ISSN 1022–6656, ESTEC, Noordwijk, The Netherlands.

    Google Scholar 

  8. Donovan, D.P. and A.C.A.P. van Lammeren, 2001: Cloud effective particle size and water content profile retrievals using combined lidar and radar observations -1. Theory and examples. J. Geophys. Res. Atmos., 106, 27425–27448.

    Article  Google Scholar 

  9. Donovan, D.P., A.C.A.P. van Lammeren, R.J. Hogan, H.W.J. Russchenberg, A.Apituley, P. Francis, J. Testud, J. Pelon, M. Quante and J. Goddard, 2001: Cloud effective particle size and water content profile retrievals using combined lidar and radar observations–2. Comparison with IR radiometer and in situ measurements of ice clouds. Geophys. Res. Atmos., 106, 27449–27464.

    Article  Google Scholar 

  10. Dye, D. and D. Baumgardner, 1984: Evaluation of the Forward Scattering Spectrometer Probe. Part I: Electronic and optical studies. J. Atmos. Oceanic Technol., 1, 329–344.

    Article  Google Scholar 

  11. Erkelens, J.S., V.K.C. Venema, H.W.J. Russchenberg and L.P. Ligthart, 2001: Coherent scattering of microwaves by particles: Evidence from clouds and smoke. J. Atmos. Sci., 58, 1091–1102.

    Article  Google Scholar 

  12. Erkelens, J.S., S.C.H.M. Jongen, H.W.J. Russchenberg and M.H.A.J. Herben, 1999: Estimation of cloud droplet concentration from radar, lidar and microwave radiometer measurements. Proc. Symp. Remote Sensing Cloud Parameters: Retrieval and Validation, Delft, The Netherlands, pp. 107–111.

    Google Scholar 

  13. Fernald, F.G, 1984: Analysis of atmospheric lidar observations: Some comments. Appl. Opt., 23, 652.

    Article  Google Scholar 

  14. Gerber, H. 1996: Microphysics of marine stratocumulus clouds with two drizzle modes. J. Atmos. Sci., 53(12), 1649–1662.

    Google Scholar 

  15. Hulst, H.C. van den, 1981: Light Scattering by Small Particles. Dover Publications, New York.

    Google Scholar 

  16. Klett, J.D., 1983: Stable analytical inversion solution for processing lidar returns. Appl. Opt., 20, 211–220.

    Article  Google Scholar 

  17. Krasnov, O. and H.W.J. Russchenberg, 2002: The relation between the radar to lidar ratio and the effective radius of droplets in water clouds: An analysis of statistical models and observed drop size distributions. 11th Conf. Cloud Phys., Ogden, AMS, USA.

    Google Scholar 

  18. Lammeren, A.C.A.P. van, H.W.J. Russchenberg, A. Apituley and H. Ten Brink, 1997: CLARA: A data set to study sensor synergy. Proc. Workshop on Synergy of Active Measurements in the Earth Radiation Mission, Geesthacht, Germany, ESA EWP 1968 or GKSS 98/eE10.

    Google Scholar 

  19. Ligthart, L.P. and L.R. Nieuwkerk, 1980: FM-CW Delft Atmospheric Research Radar. IEE Proc., 127, Pt F.

    Google Scholar 

  20. Martin, G.M., D.W. Johnson and A. Spice, 1994: The measurement and parametrization of effective radius droplets in warm stratocumulus clouds. J. Atmos. Sci., 51, 1823–1842.

    Article  Google Scholar 

  21. Peter, R. and N. Kampfer, 1992: Radiometric determination of water vapor and liquid water and its validation with other techniques. J. Geophys. Res., 97, 1817318183.

    Google Scholar 

  22. Russchenberg, H.W.J., 1992: Ground-Based Remote Sensing of Precipitation Using a Multi-Polarized FM-CW Doppler Radar. Delft University Press.

    Google Scholar 

  23. Russchenberg, H.W.J., V. K.C. Venema, A. C. A. P. van Lammeren and A. Apituley, 1998: Cloud measurements with lidar and a 3 GHz radar. Final report for ESA, contract PO151912.

    Google Scholar 

  24. Slingo, A., S. Nicholls and J. Schmeitz, 1982: Aircraft observations of marine stratocumulus during JASIN. Q. J. R. Meteorol. Soc., 108, 833–856.

    Article  Google Scholar 

  25. Spinhirne, J.D., R. Boers and W.D. Hart, 1989: Cloud top liquid water from lidar observations of marine stratocumulus. J. Appl. Meteorol., 28, 81–90.

    Article  Google Scholar 

  26. Stephens, G., 1978: Radiation profiles in extended water clouds. J. Atmos. Sci., 35, 2111–2122.

    Article  Google Scholar 

  27. Stephens, G. and Tsay, 1990: On the absorption anomaly. Q. J. R. Meteorol. Soc., 118.

    Google Scholar 

  28. Twomey, S.A., M. Piepgras and T.L. Wolfe, 1984: An assessment of the impact of pollution on global cloud albedo, Tellus, 36B, 356–366.

    Google Scholar 

  29. Ulaby, F.T., R.K. Moore and A.K. Fung, 1982: Microwave Remote Sensing. Addison-Wesley, Reading, Massachussets, p. 314.

    Google Scholar 

  30. Wolf, D.A. de and H.W.J. Russchenberg, 2000: Radar reflection from clouds: Gigahertz backscatter cross sections and Doppler spectra. IEEE Trans. Antenna Propagation, 48, 254–259.

    Google Scholar 

  31. Young, S.A., 1995: Analysis of lidar backscatter profiles in optically thin clouds. Appl. Opt., 34, 7019–7031.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Russchenberg, H., Boers, R. (2004). Radar Sensor Synergy for Cloud Studies; Case Study of Water Clouds. In: Meischner, P. (eds) Weather Radar. Physics of Earth and Space Environments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05202-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05202-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05561-4

  • Online ISBN: 978-3-662-05202-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics