Skip to main content

Physical Processes and Modelling at Ocean Margins

  • Chapter
Ocean Margin Systems
  • 959 Accesses

Abstract

Ocean margins are very productive areas and consequently they are interesting both for scientific and socio-economic reasons. Their economical importance was the main reason to support integrated projects to understand and quantify the processes responsible for high biological productivities, in order to create the scientific knowledge required for its management. For long time it was believed that high productivity of ocean margin areas was a consequence of the discharge of nutrients form the continents. As the scientific knowledge of the processes taking place on those areas increased, it was shown that biological productivity of the ocean margin is mainly a consequence of the complexity of the physical processes taking place on those areas and only in semi-enclosed areas (e.g. estuaries) a consequence of continental discharge. This conclusion has enhanced the importance of the development of integrated studies involving fieldwork and modelling.The complexity of physical problems taking place on ocean margins is a consequence of local depth gradients (e.g. continental slope and submarine canyons), but also of the wide range of forcing mechanisms driving the flow — wind, density and tides. The combination of these forcing mechanisms lead to an even more wide range of phenomena like, upwelling, fronts, internal waves, surface gravity waves, etc. To understand processes going on, process-oriented models can be used. However the final product for modelling processes in coastal areas must be an integrated model based on the primitive equations for mass and momentum. For management purposes this model has to couple physical and biological processes. In this paper a general modelling framework is described. This tool is developed to accommodate models for physics, biology and sediment transport. Numerical solutions, processes and results for the Iberian margin and for the Tagus Estuary (Portugal) are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abbott MB, McCowan A, Warren IR (1968) Numerical modelling of free surface flows that are two dimensional in plan. In: Fischer HB (ed) Proceedings of Predictive Ability of Transport Models for Inland and Coastal Waters. Academic Press

    Google Scholar 

  • Ambar IJ (1984) Seis meses de medições de correntes, temperaturas e salinidades na vertente continental ao largo da costa alentejana (in portuguese). Grupo de Oceanografia, Universidade de Lisboa. Technical Repport pp 1/84:47

    Google Scholar 

  • Ambar IJ (1985) Seis meses de medições de correntes, temperaturas e salinidades na vertente continental Portuguesa a 40° N (in portuguese). Grupo de Oceanografia. Universidade de Lisboa. Technical Repport pp 1/85: 40

    Google Scholar 

  • Ambar I, Fiúza A, Boyd T, Frouin R(1986) Observations of a warm oceanic current flowing northward along the coasts of Portugal and Spain during Nov-Dec 1983. Eos 67(144), 1054

    Google Scholar 

  • Bailard JA (1981) An energetics total load sediment transport model for a plane sloping beach. J Geophys Res 86:10938–10954

    Article  Google Scholar 

  • Barnard S, Barnier B, Beckman A, Boening C, Coulibaty M, DeCuevas D, Dengg J, Dieterich C, Ernst U, Herrmann P, Jia Y, Killworth P, Kroeger J, Lee M, Le Provost C, Molines J-M, New A, Oschlies A, Reynauld T, West L, Willebrand J (1997) DYNAMO: Dynamics of North Atlantic Models: Simulation and assimilation with high resolution models. Berichte aus dem Institut fuer Meereskunde an der ChristianAlbrechts-Universitat Kiel, n° 294 334 p

    Google Scholar 

  • Barton ED (1989) The poleward undercurrent on the eastern boundary of the subtropical North Atlantic. In:Neshyba et al. (eds) Poleward Flows Along Eastern Ocean Boundaries, Coast Estuar Stud 34:82–92

    Chapter  Google Scholar 

  • Benqué JP, Cunge J, Feuillet J, Hauguel A (1982) A new method for tidal current computation. EDF, Rapports HE41/81.26, HE42/81.17

    Google Scholar 

  • Bleck R, Rooth C, Hu D, Smith LT (1992) Salinity-driven thermocline transients in a wind- and thermohalineforced isopycnic coordinate model of the North Atlantic. J Phys Oceanogr 22:1486–1505

    Article  Google Scholar 

  • Blumberg A F, Mellor GL (1987) A description of a threedimensional coastal ocean model. In: Heaps N (ed) Three-Dimensional Coastal Ocean Models. Coast Estuar Sci 4:1–16

    Chapter  Google Scholar 

  • Bougeault P, André JC (1986) On the stability of the third-order turbulence closure for the modeling of the stratocumulus-topped boundary. J Atmosph Sci 43:15 74–15 81

    Google Scholar 

  • Bougeault P, Lacarrère P (1989) Parameterization of orography-induced turbulence in a meso-beta scale model. Monthly Weather Rev 117:1872–1890

    Article  Google Scholar 

  • Bryan K, Cox MD (1972) An approximate equation of state for numerical models of ocean circulation. J Phys Oceanogr 2:510–514

    Article  Google Scholar 

  • Cancino L, Neves RJ (1998) Hydrodynamic and sediment suspension modelling in estuarine systems. Part II: Application in the Scheldt and Gironde Estuaries. J Mar Syst 22:117–131

    Article  Google Scholar 

  • Coelho HS, Neves RJ, Leitão PC, Martins H, Santos A (1999) The slope current along the Western European Margin: A numerical investigation. Bol Inst Esp Oceanogr 15:61–72

    Google Scholar 

  • Cox MD (1984) A primitive equation, 3-dimensional model of the ocean. Technical Report number 1, Ocean Group, Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA 143 p

    Google Scholar 

  • Davies AG, Soulsby RL, King HL (1988) A numerical model of the combined wave and current bottom boundary layer. J Geophys Res 93:491–508

    Article  Google Scholar 

  • Deigaard R(1991) On the turbulent diffusion coeficient for suspended sediment. Progress Report n° 73, Inst of Hydrodynamics and Hydraulic Engineering, ISVA, Techn Univ Denmark pp 55–66

    Google Scholar 

  • Deleersnijder E, Beckers JM (1992) On the use of σ-coordinate system in regions of large bathymetric variations. J Mar Syst 3: 381–390

    Article  Google Scholar 

  • Dias JA (1997) Historical aspects of marine geology in Portugal. In: Saldanha L, Ré P (eds) One Hundred Years of Portuguese Oceanography: In the Footsteps of King Carlos de Bragança. Publicações Avulsas do Museu Bocage, Lisboa, 2a Série, n° 2, 173–226 pp

    Google Scholar 

  • Drake DE, Cacchione DA (1992) Wave-current interaction in the bottom boundary layer during storm and non-storm conditions: Observations and model predictions. Cont Shelf Res 12:1331–1352

    Article  Google Scholar 

  • Dyer KR (1980) Velocity profiles over a rippled bed and the threshold of movement of sand. Estuar Coast Mar Sci 10:181–199

    Article  Google Scholar 

  • Dyer KR (1986) Coastal and estuarine dynamics. J Wiley & Sons, Chichester 342p

    Google Scholar 

  • Dyer KR, Soulsby RL (1988) Sand transport on the continental shelf. Ann Rev Fluid Mech 20:295–324

    Article  Google Scholar 

  • Engelund F, Fredsøe J (1976) A sediment transport model for straight alluvial channels. Nordic Hydrol 7:293–306

    Google Scholar 

  • Fredsøe J(1984) Turbulent boundary layer in wave-cur-rent motion. J Hydraul Engin, ASCE, 110:1103–1120

    Article  Google Scholar 

  • Fredsoe J, Deigaard R (1992) Mechanics of Coastal Sediment Transport. Advanced Series on Ocean Engineering, vol. 3, World Scientific, 366 p

    Google Scholar 

  • Frouin R, Fiúza A, Ambar I, Boyd TJ (1990) Observations of a poleward surface current off the coasts of Portugal and Spain during the winter. J Geophys Res 95:679–691

    Article  Google Scholar 

  • Galperin B, Kantha LH, Hassid S, Rosati A (1988) A. quasi-equilibrium turbulent energy model for geo- Phvsical flows. J Atmosph Sci 45:55–62

    Article  Google Scholar 

  • Garcia M, Parker G (1991) Entrainment of bed sediment into suspension. J Hydraul Engin 117:414–435

    Article  Google Scholar 

  • Gargett AE (1984) Vertical eddy diffusivity in the ocean interior. J Mar Res 42:359–393

    Article  Google Scholar 

  • Gaspar PG, Grégoris Y, Lefevre J-M (1990) A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at station Papa and Long-Term Upper Ocean Study site. J Geophys Res 95:16179–16193

    Article  Google Scholar 

  • Glenn DA, Grant WD (1987) A suspended sediment correction for combined wave and current flows. J Geophys Res 85:1797–1808

    Google Scholar 

  • Grant WD, Madsen OS (1979) Combined wave and current interaction with a rough bottom. J Geophys Res 84:1797–1808

    Article  Google Scholar 

  • Grant WD, Madsen OS (1982) Moveable bed roughness in unsteady oscillatory flow. J Geophys Res 87:469–481

    Article  Google Scholar 

  • Grant WD, Madsen OS (1986) The continental shelf bottom boundary layer. Ann Rev Fluid Mech 18:265–305

    Article  Google Scholar 

  • Haidvogel DB, Wilkin JL, Young R(1991) A semi-spectral primitive equation ocean circulation model using vertical sigma and orthogonal curvilinear horizontal coordinates. J Comput Phys 94:151–185

    Google Scholar 

  • Haynes R, Barton ED (1990) A poleward flow along the Atlantic coast of the Iberian peninsula. J Geophys Res 95:11425–11141

    Article  Google Scholar 

  • Hervouet J-M, van Haren L (1996) Recent advances in numerical methods for fluid flows. In: Anderson MG, Walling DE, Bates PD (eds) Floodplain Processes. J Wiley & sons, Chichester pp 183–214

    Google Scholar 

  • Hill P, Nowell RM, Jumars PA (1988) Flume evaluation of the relationship between suspended sediment concentration and excess boundary shear stress. J Geophys Res 92:12499–12509

    Article  Google Scholar 

  • Huthnance JM (1984) Slope Currents and “JEBAR”. J Phys Oceanog 14:795–810

    Article  Google Scholar 

  • Huthnance JM (1986) The Rockall slope current and shelf edge processes. Proc R Soc Edinburgh Sect B 88:83–101

    Google Scholar 

  • Justesen P (1988) Prediction of turbulent oscillatory flow over rough beds. Coast Engin 12:257–284

    Article  Google Scholar 

  • Krone RB (1962) Flume studies of the transport +in estuarine shoaling processes. Hydr Eng Lab,Univ of Berkeley, California, USA

    Google Scholar 

  • Leendertsee JJ (1967) Aspects of a Computational Model for Long Water Wave Propagation. Rand Corporation, Memorandum RH-5299-RR, Santa Monica

    Google Scholar 

  • Leendertsee JJ (1970) A water qualtiy simulation model for well mixed estuaries and coastal seas. Rand Cor- poration, Memorandum RM-6230-RC, Santa Monica

    Google Scholar 

  • Landertsee JJ, Liu SK (1978) A three-dimensional turbulent energy model for non-homogeneous estuaries and coastal sea systems. In: Nihoul JCJ (ed) Hydrodynamics of Estuaries ans Fjords. Elsevier, Amsterdam 387–405

    Chapter  Google Scholar 

  • Levitus S, Boyer TP (1994) World Ocean Atlas 1994. Volume 4: NOAA Atlas NESDIS 4, 117p

    Google Scholar 

  • Levitus S, Burgett R, Boyer TP (1994) World Ocean Atlas 1994. Volumes 1 and 2: NOAA Atlas NESDIS 3, 99p

    Google Scholar 

  • Li MZ, Amos CL (1998) Predicting ripple geometry and bed roughness under combined waves and currents in a continental shelf environment. Cont Shelf Res 18:941–970

    Article  Google Scholar 

  • Li MZ, Wright LD, Amos CL (1996) Predicting ripple roughness and resuspension under combined flows in a shoreface environment. Mar Geol 130:139–161

    Article  Google Scholar 

  • Lynn RJ, Simpson JJ (1987) The California current system: The seasonal variability of its physical characteristics. J Geophys Res 92:12947–12966

    Article  Google Scholar 

  • Madsen OS (1991) Mechanics of cohesionless sediment transport in coastal waters, Proceedings of Coastal Sediments ‘91, ASCE, 15–27

    Google Scholar 

  • Magalhães F (1999) Os sedimentos da plataforma continental portuguesa: Contrastes espaciais, perspectiva temporal, potencialidades econômicas (in portuguese). Ph D Dissertation, Univ of Lisbon, 289p

    Google Scholar 

  • Magalhães F, Cascalho J, Dias JA, Matos M (2000) Surface sediments of the portuguese continental shelf north of Espinho/Sedimentos superficias da plataforma continental portuguesa a norte de Espinho. 3° Simpósio sobre a Margem Continental Ibérica Atlântica, Faro, 263–264

    Google Scholar 

  • Martins H, Santos A, Coelho EF, Neves R, Rosa TL (1999) Numerical Simulation of Internal Tides. J Mechan Engin Sci 214C:867–872

    Google Scholar 

  • Martins FA, Neves RJ, Leitão PC (1998) A three-dimen-sional hydrodynamic model with generic vertical coordinate.In: Babovic V and Larsen LC (eds) Proceedings of Hidroinformatics98 (Copenhague, Denmark, August 1998). Balkema, Rotterdam 1403–1410

    Google Scholar 

  • Martins FA, Leitão PC, Silva A, Neves R (in press) 3D modelling of the Sado Estuary using a new generic vertical discretization approach. Oceanolo Acta

    Google Scholar 

  • Mazé JP, Ahran M, Mercier H (1997) Volume budget of the eastern boundary layer off the Iberian Peninsula. Deep-Sea Res 44:1543–1574

    Google Scholar 

  • McCreary JP, Shetye SR, Kundu P (1986) Thermohaline forcing of eastern boundary currents: With application to the circulation off west coast of Australia. J Mar Res 44:71–92

    Article  Google Scholar 

  • McCreary JP, Kundu P, Chao SY (1987) On the dynamics of the California current system. J Mar Res 45:1–32

    Article  Google Scholar 

  • Mellor GL, Hakkinen S, Ezer T, Patchen R (subm.) A generalization of a sigma coordinate ocean model and an intercomparison of model vertical grids. In: Pinardi N (ed) Ocean Forecasting: Theory and Practice. Springer, Berlin

    Google Scholar 

  • Miranda R, Neves R, Coelho H, Martins H, Leitâo PC, Santos A (1999) Transport and mixing simulation along the continental shelf edge using a Lagrangian approach. Bol Inst Esp Oceanogr 15:39–60

    Google Scholar 

  • Neves RJJ (1985) Étude Expérimentale et Modélisation Mathematique de l’Hydrodynamique de l’Estuaire du Sado. PhD Thesis, Université de Liège, Belgium

    Google Scholar 

  • Nielsen P (1981) Dynamics and geometry of wave generated ripples. J Geophys Res 86:6467–6472

    Article  Google Scholar 

  • Nielsen P (1991) Combined convection and diffusion: A new framework for suspended sediment modelling. Proceedings of Coastal Sediments ‘91, ASCE, 418–431

    Google Scholar 

  • Nielsen P (1992) Coastal bottom boundary layer and sediment transport. Advanced Series on Ocean Engineering, vol. 4, World Scientific, 324 p

    Google Scholar 

  • Nittrouer C, Wright D(1994) Transport of particles across continental shelves. Rev Geophys 31: 85–113

    Article  Google Scholar 

  • Odd NVM (1986) Mathematical modelling of mud transport in estuaries. Int Symp Physical Processes in Estuaries, 9–12 September 1986

    Google Scholar 

  • Partheniades E (1965) Erosion and deposition of cohesive soils. J Hydr Div, ASCE, 91, No. HY1:105–139

    Google Scholar 

  • Phillips NA (1957) A coordinate system having some special advantages for numerical forecasting. J Meteorol 14:184–185

    Article  Google Scholar 

  • Pingree R, Le Cann B (1989) Celtic and Armorican slope and shelf residual currents. Prog Oceanogr 23:303–338

    Article  Google Scholar 

  • Pingree R, Le Cann B (1990) Structure, strength and seasonality of the slope currents in the Bay of Biscay region. J Mar Biol 70:857–885

    Article  Google Scholar 

  • Portela LI (1996) Mathematical modelling of hydro-dynamic processes and water quality in Tagus estuary, PhD thesis, Instituto Sup Técnico, Tech Univ of Lisbon, (in portuguese)

    Google Scholar 

  • Santos AJP (1995) Modelo hidrodinâmico de circulaçâo oceânica e estuarina (in portuguese). PhD Thesis, IST Lisbon 273 p

    Google Scholar 

  • Silva MC, Moita T, Figueiredo H (1986) Controlo da qualidade da água. Resultados referentes às observações realizadas em 1982 e 1983. Estudo Ambiental do Estuário do Tejo (3°série) n°7. Secretaria de Estado do Ambiente e Recursos Naturais. Lisboa PP 1–139

    Google Scholar 

  • Smith JD (1977) Modeling of sediment transport on continental shelves. In: The Sea, 6. J Wiley & sons, New York 539–577

    Google Scholar 

  • Smith JD, McLean SR (1977) Spatially averaged flow over a wavy surface. J Geophys Res 82:1735–1746

    Article  Google Scholar 

  • Soulsby RL (1997) Dynamics of marine sands. Thomas Telford Publ, London, UK, 249p

    Google Scholar 

  • Soulsby RL, Hamm L, Klopman G, Myrhaug D, Simons RR, Thomas GP (1993) Wave-current interaction within and outside the bottom boundary layer. Coast Engin 21:41–69

    Article  Google Scholar 

  • Taborda R, Dias JA (2000) Prediction of wave related bedform geometry. 3° Simpôsio sobre a Margem Continental Ibérica Atlântica, Faro 257–258

    Google Scholar 

  • Taboada JJ, Prego R, Ruiz-Villarreal M, GómezGesteira M, Montero P, Santos AP, Pérez-Villar V (1998) Evaluation of the seasonal variations in the residual circulation in the Ria of Vigo (NW Spain) by means of a 3D baroclinic model. Est Coast Shelf Sci 47:661–670

    Article  Google Scholar 

  • Trenberth KE, Large WG, Olsen JG (1990) The mean annual cycle in global wind stress. J Phys Oceanogr 20:1742–1760

    Article  Google Scholar 

  • Vale C, Sundby B (1987) Suspended sediment fluctuations in the Tagus estuary on semidiurnal and fortnightly time scales. Est Coast Shelf Sci 27:495–508

    Article  Google Scholar 

  • Vale C, Cortesão C, Castro O, Ferreira AM (1993) Suspended sediment response to pulses in river flow and semidiurnal and fortnightly tidal variations in a mesotidal estuary. Mar Chem 43:21–31

    Article  Google Scholar 

  • Van Rijn LC (1993) Principles of sediment transport in rivers, estuaries and coastal seas. Aqua Publications, Amsterdam

    Google Scholar 

  • Vincent C, Downing A (1994) Variability of suspended sand concentrations, transport and eddy diffusity under non-breaking waves on the shore-face. Cont Shelf Res 14:223–250

    Article  Google Scholar 

  • Vincent C, Green MO (1990) Field measurements of the suspended sand concentration profiles and fluxes and of the resuspension coefficient γ0 over a rippled bed. J Geophys Res 95:11591–11601

    Article  Google Scholar 

  • Visbeck M, Marshall J, Haine T, Spall M (1997) Representation of topography by sahved cells in a height coordinate ocean model. Mon Wea Rev 125:2293–2315

    Article  Google Scholar 

  • Weaver AJ, Middleton JH (1990) An analytic model for the Leeuwin Current off western Australia. Cont Shelf Res 10:105–122

    Article  Google Scholar 

  • Wiberg PL, Harris CK (1994) Ripple geometry in wavedominated environments. J Geophys Res 99:775–789

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Neves, R., Coelho, H., Taborda, R., Pina, P. (2002). Physical Processes and Modelling at Ocean Margins. In: Wefer, G., Billett, D., Hebbeln, D., Jørgensen, B.B., Schlüter, M., van Weering, T.C.E. (eds) Ocean Margin Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05127-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05127-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07872-9

  • Online ISBN: 978-3-662-05127-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics