Skip to main content

Geochemistry of Soils from the Bosumtwi Impact Structure, Ghana, and Relationship to Radiometric Airborne Geophysical Data

  • Chapter
Impacts in Precambrian Shields

Part of the book series: Impact Studies ((IMPACTSTUD))

Abstract

In a high-resolution aerogeophysical survey across the Bosumtwi impact structure, a pronounced high radiometric signal (high equivalent concentration of potassium) was found around the crater rim and to the north of the crater rim. Here we report data on major and trace element chemical compositions of soils from the structure, which have been investigated to determine the provenance, influence of source area weathering, and possible cause of the high equivalent concentration of potassium in the airborne gamma radiation data. Bosumtwi, an impact crater of 1.07 Ma age and a diameter of ~ 10.5 km, is located in early Proterozoic Birimian-Tarkwaian rocks of the semi-equatorial climatic region of Ghana, West Africa. The area forms part of the tropical rainforest environment, where warm climate, high rainfall, and high organic activity prevail, and chemical weathering is intense, leading to the formation of lateritic soils, which can be up to tens of meters thick.

Fifty-four soil samples, including forty-four from 30 cm depth and ten from 100 cm depth, were used in the study. The concentrations of both major and trace elements in the soil samples show considerable variation, as is expected from a chemical weathering environment. Compared to the underlying parent rocks, the soils are generally enriched in SiO2, Fe2O3, Zr, Nb, Hf, Ta, W and Sb, and depleted in Na, K, and the rare earth elements (REE). Compared to average upper continental crust composition, the Bosumtwi soils are more siliceous and ferruginous. At this advanced stage of weathering, with an average chemical index of alteration (CIA) of 83, the soils have a rather simple mineralogical composition that is dominated by quartz, Fe- and Al-oxides and kaolinite, in addition to a few refractory minerals (e.g., zircon).

Pronounced positive Ce anomalies, associated with high Fe2O3, are noted in the soils. A positive correlation of REE and Al2O3 contents in the soils suggests that REE are contained principally in phyllosilicates and clays. Discrimination based on abundances of Co, Ni, and Cr, elemental ratios (Th/Sc, Cr/Zr, Zr/Hf, Co/Th, La/Sc), and La-Th-Sc and Th-Hf-Co plots, shows the importance of mafic rock components in the soils.

Soils collected from areas that show a high radiometric potassium signal in the aerogeophysical maps are characterized by relatively higher K2O contents. This may reflect K mobilization due to the impact event, or source rocks for these sediments with variable concentrations of K.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aubert D, Stille P, Probst A (2001) REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochimica et Cosmochimica Acta 65: 387–406

    Article  Google Scholar 

  • Bauluz B, Mayayo JM, Fernandez-Nieto C, Gonzalez Lopez JM (2000) Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian Range (NE Spain): implications for source-area weathering, sorting, provenance, and tectonic setting. Chemical Geology 168: 135–150

    Article  Google Scholar 

  • Bhatia MR, Crook KAW (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology 92: 181–193

    Article  Google Scholar 

  • Bhatia MR, Taylor SR (1981) Trace element geochemistry and sedimentary provinces: a study from the Tasman Geosyncline, Australia. Chemical Geology 33: 115–125

    Article  Google Scholar 

  • Boamah D, Koeberl C (1999) Shallow drilling around the Bosumtwi crater, Ghana: Preliminary results [abs]. Meteoritics liuya Planetary Science 34: A13–A14

    Google Scholar 

  • Bowell RJ (1993) Mineralogy and geochemistry of tropical rainforest soils: Ashanti, Ghana. Chemical Geology 106: 345–358

    Article  Google Scholar 

  • Braun JJ, Pagel M, Muller JP, Bilong P, Michard A, Guillet B (1990) Cerium anomalies in lateritic profiles. Geochimica et Cosmochimica Acta 54: 781–795

    Article  Google Scholar 

  • Chepik A, Baranov V, Kurimo M, Multala J (1998) Joint calibration of airborne geophysical instruments in test areas in Finland and Russia. Geological Survey of Finland, Report of Investigation 144, pp 1–20

    Google Scholar 

  • Condie KC (1991) Another look at rare earth elements in shales. Geochimica et Cosmochimica Acta 55: 2527–2531

    Article  Google Scholar 

  • Condie KC, Wronkiewicz DJ (1990) A new look at the Archean-Proterozoic boundary: Sediments and tectonic setting constraint. In: Naqvi SM (ed) Precambrian Continental Crust and its Economic Resources. Elsevier, pp 61–84

    Chapter  Google Scholar 

  • Condie KC, Dengate J, Cullers RL (1995) Behavior of rare earth elements in a paleoweathering profile on granodiorite in the Front Range, Colorado, USA. Geochimica et Cosmochimica Acta 59: 279–294

    Article  Google Scholar 

  • Cullers RL, Chaudhuri S, Arnold B, Lee M, Wolf CW (1975) Rare earth distributions in clay minerals and the clay-sized fractions of the Lower Permian Havensville and Eskridge shales of Kansas and Oklahoma. Geochimica et Cosmochimica Acta 39: 1691–1703

    Article  Google Scholar 

  • Cullers RL, Basu A, Suttner LJ (1988) Geochemical signature of provenance in sand-sized material in soils and stream sediments near the Tobacco Root Batholith, Montana, U.S.A. Chemical Geology 70: 335–348

    Article  Google Scholar 

  • Davis DW, Hirdes W, Schaltegger U, Nunoo EA (1994) U-Pb age constraints on deposition and provenance of Birimian and gold-bearing Tarkwaian sediments in Ghana, West Africa. Precambrian Research 67: 89–107

    Article  Google Scholar 

  • Duddy JR (1980) Redistribution and fractionation of rare earth and other elements in a weathering profile. Chemical Geology 30: 363–381

    Article  Google Scholar 

  • Gibbs AK, Montgomery CW, O’Day PA, Erslev EA (1986) The Archean-Proterozoic transition: Evidence from the geochemistry of metasedimentary rocks of Guyana and Montana. Geochimica et Cosmochimica Acta 50: 2125–2141

    Article  Google Scholar 

  • Govindaraju K (1989) 1989 compilation of working values and sample description for 272 geostandards. Geostandards Newsletter 13: 1–113

    Google Scholar 

  • Götze J, Lewis R (1994) Distribution of REE and trace elements in size and mineral fractions of high-purity quartz sands. Chemical Geology 114: 43–57

    Article  Google Scholar 

  • Grasty RL (1987) The design, construction and application of airborne gamma-ray spectrometer calibration pads — Thailand. Geological Survey of Canada Paper 87 — 10, 34 pp

    Google Scholar 

  • Gregory AF, Horwood JL (1961) A laboratory study of gamma-ray spectra at the surface of rocks. Ottawa, Mines Branch Research Report R85, 52 pp

    Google Scholar 

  • Hirdes W, Davis DW, Lüdtke G, Konan G (1996) Two generations of Birimian (Paleoproterozoic) volcanic belts in northeastern Cote d’Ivoire (West Africa): Consequences for the “Birimian controversy”. Precambrian Research 80: 173–191

    Article  Google Scholar 

  • Humphris SE (1984) The mobility of the rare earth elements in the crust. In: Henderson P (ed) Rare Earth Element Geochemistry. Elsevier, pp 317–340

    Google Scholar 

  • Jones WB (1985) Chemical analyses of Bosumtwi crater target rocks compared with Ivory Coast tektites. Geochimica et Cosmochimica Acta 49: 2569–2576

    Article  Google Scholar 

  • Jones WB, Bacon M, Hastings DA (1981) The Lake Bosumtwi impact crater, Ghana. Geological Society of America Bulletin 92: 342–349

    Article  Google Scholar 

  • Junner NR (1937) The geology of the Bosumtwi caldera and surrounding country. Gold Coast Geological Survey Bulletin 8: 1–38

    Google Scholar 

  • Koeberl C (1993) Instrumental neutron activation analysis of geochemical and cosmochemical samples: A fast and proven method for small sample analysis. Journal of Radioanalytical and Nuclear Chemistry 168: 47–60

    Article  Google Scholar 

  • Koeberl C, Bottomley RJ, Glass BP, Storzer D (1997a) Geochemistry and age of Ivory Coast tektites and microtektites. Geochimica et Cosmochimica Acta 61: 1745–1772

    Article  Google Scholar 

  • Koeberl C, Reimold WU, Pesonen LJ, Brandt D (1997b) New Studies of the Bosumtwi Impact Structure, Ghana: The 1997 Field Season [abs]. Meteoritics liuya Planetary Science 32: A72–A73

    Google Scholar 

  • Koeberl C, Reimold WU, Blum JD, Chamberlain CP (1998) Petrology and geochemistry of target rocks from the Bosumtwi impact structure, Ghana, and comparison with Ivory Coast tektites. Geochimica et Cosmochimica Acta 62: 2179–2196

    Article  Google Scholar 

  • Kolbe P, Pinson WH, Saul JM, Miller EW (1967) Rb-Sr study on country rocks of the Bosumtwi crater, Ghana. Geochimica et Cosmochimica Acta 31: 869–875

    Article  Google Scholar 

  • Krongberg BI, Nesbitt HW, Lam WW (1986) Upper Pleistocene Amazon deep-sea fan muds reflect intense chemical weathering of their mountainous source lands. Chemical Geology 54: 283–294

    Article  Google Scholar 

  • Lecomte P (1988) Stone line profiles: Importance in geochemical exploration. Journal of Geochemical Exploration 30: 35–61

    Article  Google Scholar 

  • Leube A, Hirdes W, Mauer R, Kesse GO (1990) The early Proterozoic Birimian Supergroup of Ghana and some aspects of its associated gold mineralization. Precambrian Research 46: 139–165

    Article  Google Scholar 

  • Marsh JS (1991) REE fractionation and Ce anomalies in weathered Karoo dolente. Chemical Geology 90: 189–194

    Article  Google Scholar 

  • McLennan SM (1989) Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. In: Lipin BR, McKay GA (eds) Geochemistry and mineralogy of rare earth elements. Reviews in Mineralogy 21: 169–200

    Google Scholar 

  • McLennan SM, Taylor SR (1991) Sedimentary rocks and crustal evolution: Tectonic setting and secular trends. Journal of Geology 99: 1–21

    Article  Google Scholar 

  • McLennan SM, Nancy WB, Taylor SR (1980) Rare earth element-thorium correlations in sedimentary rocks, and the composition of the continental crust. Geochimica et Cosmochimica Acta 44: 1833–1839

    Article  Google Scholar 

  • Middelburg JJ, Van der Weijden CH, Woittiez JRW (1988) Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chemical Geology 68: 253–273

    Article  Google Scholar 

  • Mongelli G (1993) REE and other trace elements in granitic weathering profile from “Serre”, southern Italy. Chemical Geology 103: 17–25

    Article  Google Scholar 

  • Moon PA, Mason D (1967) The geology of/a° field sheets 129 and 131, Bompata SW and NW. Ghana Geological Survey Bulletin 31: 1–51

    Google Scholar 

  • Multala J (1981) The construction of gamma-ray spectrometer calibration pads. Geoexploration 19: 33–46

    Article  Google Scholar 

  • Murali AV, Parthasarathy R, Mahadevan TM, Sankar Das M (1983) Trace element characteristics, REE patterns and partition coefficients of zircons from different geological environments — A case study on Indian zircons. Geochimica et Cosmochimica Acta 47: 2047–2052

    Article  Google Scholar 

  • Nance WB, Taylor SR (1977) Rare earth element patterns and crustal evolution — II. Archean sedimentary rocks from Kalgoorlie, Australia. Geochimica et Cosmochimica Acta 41: 225–231

    Article  Google Scholar 

  • Nesbitt HW (1979) Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature 279: 206–210

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299: 715–717

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta 48: 1523–1534

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1989) Formation and diagenesis of weathering profiles. Journal of Geology 97: 129–147

    Article  Google Scholar 

  • Nesbitt HW, Markovics G, Price RC (1980) Chemical processes affecting alkalines and alkaline earths during continental weathering. Geochimica et Cosmochimica Acta 44: 1659–1666

    Article  Google Scholar 

  • Ojamo H, Pesonen U, Elo S, Hautaniemi H, Koeberl C, Reimold WU, Plado J (1997) The Bosumtwi Impact Structure, Ghana: International geophysical co-operation at the best [absi. In: Kaikkonen P, Komminaho K, Salmirinne H (eds) Sovelletun geofysiikan XI neuvottelupäivät. Oulun yliopisto, Oulu, pp 10–11

    Google Scholar 

  • Pesonen LJ, Koeberl C, Ojamo H, Hautaniemi H, Elo S, Plado J (1998) Aerogeophysical studies of the Bosumtwi impact structure, Ghana [abs]. Geological Society of America, Abstracts with Programs 30/7: A190

    Google Scholar 

  • Pesonen LJ, Plado J, Koeberl C, Elo S (1999) The Lake Bosumtwi meteorite impact structure, Ghana: Magnetic modeling [abs]. Meteoritics liuya Planetary Science 34: A91–A92

    Article  Google Scholar 

  • Plado J, Pesonen LJ, Koeberl C, Elo S (2000) The Bosumtwi meteorite impact structure, Ghana: A magnetic model. Meteoritics liuya Planetary Science 35: 723–732

    Article  Google Scholar 

  • Prudêncio MI, Gouveia MA, Sequeira Braga MA (1995) REE distribution in present-day andancient surface environments of basaltic rocks (Central Portugal). Clay Minerals 30: 239–248

    Article  Google Scholar 

  • Rankin PC, Childs CW (1976) Rare earth elements in iron-manganese concretions from some New Zealand soils. Chemical Geology 18: 54–64

    Article  Google Scholar 

  • Reimold WU, Koeberl C, Bishop J (1994) Roter Kamm impact crater, Namibia: Geochemistry of basement rocks and breccias. Geochimica et Cosmochimica Acta 58: 2689–2710

    Article  Google Scholar 

  • Reimold WU, Brandt D, Koeberl C (1998) Detailed structural analysis of the rim of a large, complex impact crater: Bosumtwi crater, Ghana. Geology 26: 543–546

    Article  Google Scholar 

  • Rollinson HR (1993) Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman, 352 pp

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The Continental Crust: Its Composition and Evolution. Blackwell, 312 pp

    Google Scholar 

  • Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Reviews of Geophysics 33: 241–265

    Article  Google Scholar 

  • Taylor PN, Moorbath S, Leube A, Hirdes W (1992) Early Proterozoic crustal evolution in the Birimian of Ghana: Constraints from geochronology and isotope geochemistry. Precambrian Research 56: 97–111

    Article  Google Scholar 

  • Topp SE, Salbu B, Roaldset E, Jorgensen P (1984) Vertical distribution of trace elements in lateritic soil (Suriname). Chemical Geology 47: 159–174

    Article  Google Scholar 

  • Vital H, Stattegger K (2000) Major and trace elements of stream sediments from the lowermost Amazon River. Chemical Geology 168: 151–168

    Article  Google Scholar 

  • Wagner R, Reimold WU, Brandt D (2001) Bosumtwi impact crater, Ghana: A remote sensing investigation. This volume

    Google Scholar 

  • Woodfield PD (1966) The geology of the ’/a° field sheet 91, Fumso NW. Ghana Geological Survey Bulletin 30: 1–66

    Google Scholar 

  • Wright JB, Hastings DA, Jones WB, Williams HR (1985) Geology and Mineral Resources of West Africa. Allen and Unwin, London, pp 38–45

    Chapter  Google Scholar 

  • Wronkiewicz DJ, Condie KC (1987) Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source-area weathering and provenance. Geochimica et Cosmochimica Acta 51: 2401–2416

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boamah, D., Koeberl, C. (2002). Geochemistry of Soils from the Bosumtwi Impact Structure, Ghana, and Relationship to Radiometric Airborne Geophysical Data. In: Plado, J., Pesonen, L.J. (eds) Impacts in Precambrian Shields. Impact Studies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05010-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05010-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07803-3

  • Online ISBN: 978-3-662-05010-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics