Skip to main content

Photochemical Processes in the Euphotic Zone of Sea Water: Progress and Problems

  • Chapter
Chemistry of Marine Water and Sediments

Part of the book series: Environmental Science ((ENVSCIENCE))

Abstract

There has been an increasing interest in the photochemical processes that occur in the surface waters of the oceans and other natural waters. The sunlight aquatic environment, which includes the euphotic zone, aerosols, the surface microlayer and the sediment-water interface in shallow areas, is a likely site for photochemical transformations of dissolved and particulate non-living matter, both organic and inorganic (Zafiriou et al. 1984). The most obvious evidence of photoreaction in aquatic environments is the widespread presence of phytoplankton and other light-dependent underwater plants, and much effort has been directed towards the mathematical description of photosynthesis by freshwater as well as marine phytoplankton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson MA, Morel FM (1982) The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thalassiosira weissflogii. Limnol Oceanogr 27:789–813

    Article  CAS  Google Scholar 

  • Baker KS, Smith RC, Green AES (1982) Middle ultraviolet irradiance at the ocean surface: Measurements and models. Limnol Oceanogr 27:500–509

    Article  CAS  Google Scholar 

  • Behnke W, Scheer V, Zetzsch C (1995) Production of photolytic precursor of atomic Cl from aerosols and Cl- in the presence of O3. In: Grimvall A., Leer EWB de (eds) Naturally produced organohalogens. Kluwer Academic Publishers, Dordrecht, pp 375–384

    Chapter  Google Scholar 

  • Berg CMG Van den (1995) Evidence for organic complexation of iron in seawater. Mar Chem 50:139–157

    Article  Google Scholar 

  • Blough NV, Zepp RG (1995) Reactive oyxgen species in natural waters. In: Foote CS, Valentine JS (eds) Active oxygen in chemistry. Chapman and Hall, New York, pp 280–333

    Chapter  Google Scholar 

  • Brand (1991) Minimum iron requirements of marine phytoplankton and the implications for biogeochemical control of new production. Limnol Oceanogr 36:1756–1771

    Article  Google Scholar 

  • Braterman PS, Cairns-Smith AG, Sloper RW (1984) Photo-oxidation of iron(II) in water between pH 7.5 and 4.0. J Chem Soc Dalton Trans 1441–1445

    Google Scholar 

  • Calza, P, Maurino V, Minero C, Pelizzetti E, Sega M, Vincenti M (2001) Chloro and bromophenols formation from phenol and halides by simulated solar light irradiation in the presence of iron ions, iron oxides and cadmium sulfide. (to be published)

    Google Scholar 

  • Calza, P, Maurino V, Minero C, Pelizzetti E, Sega M, Vincenti M (2001) Chloro and bromophenols formation from phenol and halides by simulated solar light irradiation in the presence of iron ions, iron oxides and cadmium sulfide.

    Google Scholar 

  • Faust BC, Hoignè J(1990) Photolysis of Fe(III)-hydroxy complexes as sources of OH radicals in clouds, fog and rain. Atmos Environ 23:235–240

    Google Scholar 

  • Faust BC, Zepp RG (1993) Photochemistry of aqueous iron(III)-polycarboxylate complexes: roles in the chemistry of atmospheric and surface waters. Environ Sci Technol 27:2517–2522

    Article  CAS  Google Scholar 

  • Finlayson-Pitts BJ, Pitts JN Jr (1986) Atmospheric chemistry: Fundamentals and experimental techniques. Wiley, New York Foote ST, Clennan EL (1995) Properties and reactions of synglet dioxygen. In: Foote CS, Valentine JS, Greenberg A, Liebman JF (eds) Active oxygen in chemistry, vol II. Blackie Academic and Professional, Glasgow, UK, pp 105–140

    Google Scholar 

  • Gerisher H (1979) Solar photoelectrolysis with semiconductor electrodes. Appl Physics 31:115–172

    Article  Google Scholar 

  • Gledhill M, Berg CMG Van den (1995) Measurement of the redox speciation of iron in seawater by catalytic cathodic voltammetry. Mar Chem 50:51–61

    Article  CAS  Google Scholar 

  • Harvey GR (1983), Dissolved carbohydrates in the New York bight and the variability of marine organic matter. Mar Chem 12:333–339

    Article  CAS  Google Scholar 

  • Hautala R (1978) U.S. Environmental Protection Agency. U.S. National Technical Information Service, Springfield, VA. (EPA-600/3–78–060 Report PB-285)

    Google Scholar 

  • Hoignè J (1990) Formulation and calibration of environmental reaction kinetics; oxidation by aqueous photooxidants as an example in aquatic chemical kinetics. In: Stumm W (ed) Reaction rates of processes in natural waters. Wiley Interscience, New York, pp 43–70

    Google Scholar 

  • Hoignè J, Faust BC, Haag WR, Scully FE, Zepp RG (1989) Aquatic humic substances as sources and sinks of photochemically produced transient reactants. In: Suffert EM, Mac Carthy P (eds) Aquatic substances: Influence on fate and treatment of pollutants. American Chemical Society, Washington D.C., pp 363–381

    Google Scholar 

  • Howard PH (1975) EPA report No. EPA-560/5–75–006. Washington, DC

    Google Scholar 

  • Joussot-Dubien J, Kadiri A (1970) Photosensitized oxidation of ammonia by singlet oxygen in aqueous solution and in seawater. Nature 227:700–701

    Article  CAS  Google Scholar 

  • Keene WC (1995) Inorganic Cl cycling in the marine boundary layer: A review. In: Grimvall A, Leer WB de (eds) Naturally-produced organohalogens. Kluwer Academic Publishers, Dordrecht, pp 363–371

    Chapter  Google Scholar 

  • Lee WN, Zepp, RG, Gordon JA, Baughman GL, Cline DM (1977) Kinetics of chemical degradation of malathion in water. Environ Sci Technol 11(1):88–93

    Article  Google Scholar 

  • Leermakers PA, Thomas HT, Weis LD, James FC (1966) Spectra and photochemistry of molecules adsorbed on silica gel IV. J Am Chem Soc 88:5075–5083

    Article  CAS  Google Scholar 

  • Leighton PA (1961) Photochemistry of air pollution. Academic Press, New York, pp 6–41

    Google Scholar 

  • Look SA, Fenical W (1984) Erythrolides: Unique marine diterpenoids interrelated by a naturally occurring di-6-methane rearrangement. J Am Chem Soc 106:5026–5027

    Article  CAS  Google Scholar 

  • Martin JH, Fitzwater SE, Gordon RM (1990) Iron deficiency limits phytoplankton growth in Antartic waters. Global Biogeochem Cycles 4:5–12

    Article  CAS  Google Scholar 

  • McKnight DM, Kimball BA, Bencala KE (1988) Iron photoreduction and oxidation in an acidic mountain stream. Science 240:637–640

    Article  CAS  Google Scholar 

  • Miles CJ, Brezonik PL (1981) Oxygen consumption in humic colored waters by a photochemical ferrousferric catalytic cycle. Environ Sci Technol 15:1089–1095

    Article  CAS  Google Scholar 

  • Miller GC, Zepp RG (1979) Effects of suspended sediments on photolysis rates of dissolved pollutants. Wat Res 13:453–485

    Article  CAS  Google Scholar 

  • Millero FJ (1996) Chemical oceanography, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Minero C, Maurino V, Calza P, Pelizzetti E (1997) Photocatalytic formation of tetrachloromethane from chloroform and chloride ions. New J Chem 21:841–842

    CAS  Google Scholar 

  • Newman L (ed) (1984) Gas-liquid chemistry of natural waters, vols I and II. Brookhaven National Laboratory, Upton, N.Y. (BNL 51757)

    Google Scholar 

  • Pelizzetti E, Minero C, Maurino V (1990) The role of colloidal particles in the photodegradation of organic compounds of environmental concern in aquatic systems. Adv Colloid Interface Sci 32:271–316

    Article  CAS  Google Scholar 

  • Rodgers MAT, Snowden PT (1982) Lifetime of O2 (1Δg) in liquid water as determined by time-resolved infrared luminescence measurements. J Amer Soc 104:5541–5561

    Article  CAS  Google Scholar 

  • Roof AAM (1982) Aquatic photochemistry. In: Hutzinger O (ed) The handbook of environmental chemistry, vol IIB: Reactions and processes. Springer-Verlag, Berlin, pp 43–65

    Google Scholar 

  • Rue EL, Bruland KW (1995) Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method. Mar Chem 50:117–138

    Article  CAS  Google Scholar 

  • Sehgal C, Sutherland RG, Verrall RE (1980) Optical spectra of sonoluminescence from transient and stable cavitation in water satured with various gases. J Phys Chem 84:388

    Article  CAS  Google Scholar 

  • Shindo H, Huang PM (1982) Role of manganese IV oxide in abiotic formation of humic substances in the environment. Nature 298:363

    Article  CAS  Google Scholar 

  • Singh HB, Kasting JF (1988) Chlorine-hydrocarbon photochemistry in the marine troposphere and lower stratosphere. J Atmos Chem 7:262–285

    Article  Google Scholar 

  • Stumm W (1992) Chemistry of the solid-water interface. John Wiley and Sons, New York

    Google Scholar 

  • Swallow JC (1969) Hydrated electrons in seawater. Nature 222:369–370

    Article  CAS  Google Scholar 

  • Voelker BM, Morel FMM, Sulzberger B (1997) Iron redox cycling in surface waters: Effects of humic substances and light. Environ Sci Technol 31(4):1004–1011

    Article  CAS  Google Scholar 

  • Wardman P (1989) Reduction potentials of one-electron couples involving free-radicals in aqueous solution. J Phys Chem Ref Data 18:1637–1755

    Article  CAS  Google Scholar 

  • Williams PM, Druffel ERM (1987) Radiocarbon in dissolved organic matter in the Central North Pacific Ocean. Nature 330:246–248

    Article  CAS  Google Scholar 

  • Zafiriou OC (1983) Naturally water photochemistry. In: Riley JP, Chester R (eds) Chemical oceanography, vol VIII. Academic Press, New York, pp 339–379

    Google Scholar 

  • Zafiriou OC, Joussot-Dubien J, Zepp RG, Zika R (1984) Photochemistry of natural waters. Environ Sci Technol 18(12):358–371

    Google Scholar 

  • Zepp RG (1978) Quantum yields for reaction of pollutants in dilute aqueous solution. Environ Sci Technol 12(3):327–329

    Article  CAS  Google Scholar 

  • Zepp RG (1980) Assessing the photochemistry of organic pollutants in aquatic environments. In: Haque R (ed) Dynamics, exposure and hazard assessment of toxic chemicals. Ann Arbor Science, Ann Arbor, Mich., pp 69–110

    Google Scholar 

  • Zepp RG, Wolfe NL (1987) Abiotic transformation of organic chemicals at the particle-water interface. In: Stumm W (ed) Aquatic surface chemistry. Wiley, New York, pp 423–455

    Google Scholar 

  • Zika R (1981) Marine organic photochemistry. In: Duursma EK, Dawson R (eds) Marine organic chemistry. Elsevier, Amsterdam, The Netherlands, pp 299–326

    Google Scholar 

  • Zika R, Salzman E, Chameides WL, Davis DD (1982) Hydrogen peroxide levels in rainwater collected in south Florida and the Bahamas Islands. J Geophys Res 87:5015–5017

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pelizzetti, E., Calza, P. (2002). Photochemical Processes in the Euphotic Zone of Sea Water: Progress and Problems. In: Gianguzza, A., Pelizzetti, E., Sammartano, S. (eds) Chemistry of Marine Water and Sediments. Environmental Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04935-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04935-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07559-9

  • Online ISBN: 978-3-662-04935-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics