Skip to main content

From Enumerative Geometry to Solving Systems of Polynomial Equations

  • Chapter
Computations in Algebraic Geometry with Macaulay 2

Part of the book series: Algorithms and Computation in Mathematics ((AACIM,volume 8))

Abstract

Solving a system of polynomial equations is a ubiquitous problem in the applications of mathematics. Until recently, it has been hopeless to find explicit solutions to such systems, and mathematics has instead developed deep and powerful theories about the solutions to polynomial equations. Enumerative Geometry is concerned with counting the number of solutions when the polynomials come from a geometric situation and Intersection Theory gives methods to accomplish the enumeration.

Supported in part by NSF grant DMS-0070494.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Aluffi and W. Fulton: Lines tangent to four surfaces containing a curve. 2001.

    Google Scholar 

  2. E. Becker, M. G. Marinari, T. Mora, and C. Traverso: The shape of the Shape Lemma. In Proceedings ISSAC-94, pages 129–133, 1993.

    Google Scholar 

  3. E. Becker and Th. Wöermann: On the trace formula for quadratic forms. In Recent advances in real algebraic geometry and quadratic forms (Berkeley, CA, 1990/1991; San Francisco, CA, 1991), pages 271–291. Amer. Math. Soc., Providence, RI, 1994.

    Chapter  Google Scholar 

  4. D. N. Bernstein: The number of roots of a system of equations. Funct. Anal. Appl., 9:183–185, 1975.

    Article  Google Scholar 

  5. O. Bottema and G.R. Veldkamp: On the lines in space with equal distances to n given points. Geometrie Dedicata, 6:121–129, 1977.

    MathSciNet  MATH  Google Scholar 

  6. A. M. Cohen, H. Cuypers, and H. Sterk, editors. Some Tapas of Computer Algebra. Springer-Varlag, 1999.

    MATH  Google Scholar 

  7. D. Cox, J. Little, and D. O’Shea: Ideals, Varieties, Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. UTM. Springer-Verlag, New York, 1992.

    Google Scholar 

  8. A. I. Degtyarev and V. M. Kharlamov: Topological properties of real algebraic varieties: Rokhlin’s way. Uspekhi Mat. Nauk, 55(4(334)):129–212, 2000.

    MathSciNet  Google Scholar 

  9. D. Eisenbud: Commutative Algebra With a View Towards Algebraic Geometry. Number 150 in GTM. Springer-Verlag, 1995.

    Google Scholar 

  10. A. Eremenko and A. Gabrielov: Rational functions with real critical points and B. and M. Shapiro conjecture in real enumerative geometry. MSRI preprint 2000–002, 2000.

    Google Scholar 

  11. A. Eremenko and A. Gabrielov: New counterexamples to pole placement by static output feedback. Linear Algebra and its Applications, to appear, 2001.

    Google Scholar 

  12. W. Fulton: Intersection Theory. Number 2 in Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, 1984.

    MATH  Google Scholar 

  13. W. Fulton and R. MacPherson: Intersecting cycles on an algebraic variety. In P. Holm, editor, Real and Complex Singularities, pages 179–197. Oslo, 1976, Sijthoff and Noordhoff, 1977.

    Google Scholar 

  14. B. Huber, F. Sottile, and B. Sturmfels: Numerical Schubert calculus. J. Symb. Comp., 26(6):767–788, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Kleiman: The transversality of a general translate. Compositio Math., 28:287–297, 1974.

    MathSciNet  MATH  Google Scholar 

  16. S. Kleiman and D. Laksov: Schubert calculus. Amer. Math. Monthly, 79:1061–1082, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Lichtblau: Finding cylinders through 5 points in . Mss., email address: danl@wolfram.com, 2001.

    Google Scholar 

  18. I.G. Macdonald, J. Pach, and T. Theobald: Common tangents to four unit balls in R3. To appear in Discrete and Computational Geometry 26:1 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Pedersen, M.-F. Roy, and A. Szpirglas: Counting real zeros in the multivariate case. In Computational Algebraic Geometry (Nice, 1992), pages 203–224. Birkhäuser Boston, Boston, MA, 1993.

    Chapter  Google Scholar 

  20. J. Rosenthal and F. Sottile: Some remarks on real and complex output feedback. Systems Control Lett., 33 (2) : 73–80, 1998. For a description of the computational aspects, see http://www.nd.edu/~rosen/pole/.

    Article  MathSciNet  MATH  Google Scholar 

  21. F. Sottile: Enumerative geometry for the real Grassmannian of lines in projective space. Duke Math. J., 87(1) :59–85, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  22. F. Sottile: The special Schubert calculus is real. ERA of the AMS, 5:35–39, 1999.

    MathSciNet  MATH  Google Scholar 

  23. F. Sottile: The conjecture of Shapiro and Shapiro. An archive of computations and computer algebra scripts, http://www.expmath.org/extra/9.2/sottile/, 2000.

    Google Scholar 

  24. F. Sottile: Elementary transversality in the schubert calculus in any characteristic. math.AG/0010319, 2000.

    Google Scholar 

  25. F. Sottile: Real Schubert calculus: Polynomial systems and a conjecture of Shapiro and Shapiro. Exper. Math., 9:161–182, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  26. F. Sottile: Some real and unreal enumerative geometry for flag manifolds. Mich. Math. J, 48:573–592, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  27. F. Sottile and T. Theobald: Lines tangent to 2n — 2 spheres in Rn.. math.AG/0105180, 2001.

    Google Scholar 

  28. B. Sturmfels: Gröbner Bases and Convex Polytopes, volume 8 of University Lecture Series. American Math. Soc., Providence, RI, 1996.

    MATH  Google Scholar 

  29. J. Verschelde: Polynomial homotopies for dense, sparse, and determinantal systems. MSRI preprint 1999–041, 1999.

    Google Scholar 

  30. J. Verschelde: Numerical evidence of a conjecture in real algebraic geometry. Exper. Math., 9:183–196, 2000.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sottile, F. (2002). From Enumerative Geometry to Solving Systems of Polynomial Equations. In: Eisenbud, D., Stillman, M., Grayson, D.R., Sturmfels, B. (eds) Computations in Algebraic Geometry with Macaulay 2. Algorithms and Computation in Mathematics, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04851-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04851-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07592-6

  • Online ISBN: 978-3-662-04851-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics