Skip to main content

Electronic, Transport and Mechanical Properties of Carbon Nanotubes

  • Chapter
Clusters and Nanomaterials

Part of the book series: Springer Series in CLUSTER PHYSICS ((CLUSTER))

Summary

This article reviews the electronic properties of plain and doped nanotubes. The effect of doping on transport is then discussed. Novel transport properties are obtained for N-P doped nanotubes. It will be shown that N-P junctions of semiconducting zigzag tubes have a rectifying behavior whereas those of metallic armchair tubes have a negative differential resistance. These effects become more pronounced as the tube radius is reduced. Such interesting and novel properties may be used for designing new nanoscale devices. In a second part, mechanical properties of the tubes and the effect of defects on them will be discussed. This section will be illustrated by the results of molecular dynamics simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Iijima: Nature 354, 56–58 (1991)

    Article  ADS  Google Scholar 

  2. T.W. Ebbesen, P.M. Ajaayan: Nature 358, 220–222 (1992);

    Article  ADS  Google Scholar 

  3. S. Iijima, T. Ishihashi: Nature 363, 603–605 (1993);

    Google Scholar 

  4. D.S. Bethune et al.: Nature 363, 605–607 (1993)

    Article  ADS  Google Scholar 

  5. A. Thess et al.: Science 273, 483–487 (1996)

    Article  ADS  Google Scholar 

  6. M. Terrones et al.: Nature 388, 52–55 (1997)

    Article  ADS  Google Scholar 

  7. C. Journet at al.: Nature 388, 756–758 (1997)

    Article  ADS  Google Scholar 

  8. L. Boulanger et al.: Proceedings of the 13 th International Conference on Electron Microscopy IIIA, 315–316 ( Editions de Physique, Paris 1994 );

    Google Scholar 

  9. Stephan et al.: Science 266, 1683–1685 (1994);

    Google Scholar 

  10. F. Banhart, M. Zwanger, H.J. Muhr, Chem. Phys. Lett. 231, 98 (1994);

    Article  ADS  Google Scholar 

  11. L. Boulanger et al.: Chem. Phys. Lett. 234, 227 (1995);

    Article  ADS  Google Scholar 

  12. N.G. Chopra et al.: Science 269, 966–967 (1995);

    Article  ADS  Google Scholar 

  13. K. Suenaga et al.: Science 269 653–655 (1997)

    Article  ADS  Google Scholar 

  14. Y. Miyamoto, A. Rubio, M.L. Cohen, S.G. Louie: Phys. Rev. B. 50, 4976–4081 (1994);

    Google Scholar 

  15. Y. Miyamoto, S.G. Louie, M.L. Cohen: Phys. Rev. Lett. 76 2121–2124 (1996) and references therein

    Google Scholar 

  16. H. Dai et al.: Nature 384, 147–151 (1996)

    Article  ADS  Google Scholar 

  17. J.W. Mintmire et al.: Phys. Rev. Lett. 68, 631 (1992)

    Article  ADS  Google Scholar 

  18. C.L. Kane, E.J. Mele: Phys. Rev. Lett. 78, 1932 (1997)

    Article  ADS  Google Scholar 

  19. R.A. Jishi et al.: J. Phys. Soc. Japan 63, 2252 (1994)

    Article  ADS  Google Scholar 

  20. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund: Science of Fullerenes and Carbon Nanotubes ( Academic Press, San Diego 1996 )

    Google Scholar 

  21. N. Hamada et al.: Appl. Phys. Lett. 68, 1579 (1992);

    Article  Google Scholar 

  22. R. Saito et al.: Appl. Phys. Lett. 60, 2204 (1992)

    Article  ADS  Google Scholar 

  23. J.W.G. Wildöer et al.: Nature 391, 59–61 (1998);

    Article  ADS  Google Scholar 

  24. T.W. Odom et al.: Nature 391, 62–64 (1998)

    Article  ADS  Google Scholar 

  25. R.S. Lee, H.J. Kim, J.E. Fisher, A. Thess, R.E. Smalley: Nature 388, 255–257 (1997);

    Article  ADS  Google Scholar 

  26. A.M. Rao, P.C. Eklund, S. Bandow, A. Thess, R.E. Smalley: Nature 388, 257–259 (1997)

    Article  ADS  Google Scholar 

  27. L. Grigorian et al.: Phys. Rev. B 58, R4195–4198 (1998);

    Article  ADS  Google Scholar 

  28. L. Grigorian et al.: Phys. Rev. Lett. 80, 5560 (1998)

    Article  ADS  Google Scholar 

  29. C.H. Xu, C.Z. Wang, C.T. Chan, K.M. Ho: J. Phys. Condens. Matter 4, 6047 (1992)

    Article  ADS  Google Scholar 

  30. K. Esfarjani, Y. Kawazoe: J. Phys. Condens. Matter 10, 8257 (1998)

    Article  ADS  Google Scholar 

  31. Y. Miyamoto, A. Rubio, X. Blase, M.L. Cohen, S.G. Louie: Phys. Rev. Lett. 74, 2993 (1995)

    Article  ADS  Google Scholar 

  32. P.M. Ajayan, S. Iijima: Nature 361, 333 (1993)

    Article  ADS  Google Scholar 

  33. M.R. Pederson, J.Q. Broughton: Phys. Rev. Lett. 69, 2689 (1992)

    Article  ADS  Google Scholar 

  34. K. Ohno et al.: Phys. Rev. Lett. 76, 3590 (1996)

    Article  ADS  Google Scholar 

  35. A.A. Farajian, K. Ohno, K. Esfarjani, Y. Kawazoe: to appear in J. Chem. Phys. (1999)

    Google Scholar 

  36. S.J. Tans et al.: Nature 386, 474 (1997);

    Article  ADS  Google Scholar 

  37. M. Bockrath et al.: Science 275, 1922 (1997);

    Article  Google Scholar 

  38. S.J. Tans, A.R.M. Verschueren, C. Dekker: Nature 393, 49 (1998)

    Article  ADS  Google Scholar 

  39. L. Chico et al.: Phys. Rev. B 54, 2600 (1996)

    Article  ADS  Google Scholar 

  40. L. Chico et al.: Phys. Rev. Lett. 81, 1278 (1998)

    Article  ADS  Google Scholar 

  41. K. Esfarjani, A.A. Farajian, Y. Kawazoe: Appl. Phys. Lett. 74, 79 (1999)

    Article  ADS  Google Scholar 

  42. M.C. Munoz et al.: Prog. Surf. Science 26, 117 (1988); F. Garcia-Moliner and V.R. Velasco: Theory of Single and Multiple Interfaces ( World Scientific, Singapore 1992 )

    Google Scholar 

  43. A.A. Farajian, K. Esfarjani, Y Kawazoe: Phys. Rev. Lett. 82, 5084 (1999)

    Article  ADS  Google Scholar 

  44. M. Büttiker: J. Phys. Condens. Matter 5, 9361 (1993);

    Article  ADS  Google Scholar 

  45. T. Christen, M. Büttiker: Europhys. Lett. 35, 523 (1996)

    Article  ADS  Google Scholar 

  46. D.S. Fisher, P.A. Lee: Phys. Rev. B 23, 6851 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  47. M.P. Anantram, T.R. Govindan: Phys. Rev. B 58, 4882 (1998);

    Article  ADS  Google Scholar 

  48. J. Cserti et al.: Phys. Rev. B 57, 15092 (1998);

    Article  ADS  Google Scholar 

  49. R. Tamura, M. Tsukada: Phys. Rev. B 55, 4991 (1997); Phys. Rev. B 58, 8120 (1998)

    Article  Google Scholar 

  50. M. Büttiker et al.: Phys. Rev. B 31, 6207 (1985)

    Article  ADS  Google Scholar 

  51. A. Bezryadin et al.: Phys. Rev. Lett. 80, 4036 (1998)

    Article  ADS  Google Scholar 

  52. J. Tersoff: Phys. Rev. Lett. 61, 2879 (1988); Phys. Rev. B 37, 6991 (1988)

    Article  Google Scholar 

  53. D.W. Brenner: Phys. Rev. B 42, 9458 (1990)

    Article  ADS  Google Scholar 

  54. J. Yu, K. Kalia, P. Vashishta: J. Chem. Phys. 103, 6697 (1995)

    Article  ADS  Google Scholar 

  55. R.A. Jishi et al.: Chem. Phys. Lett. 209, 77 (1993)

    Article  ADS  Google Scholar 

  56. J.P. Lu: Phys. Rev. Lett. 79, 1297 (1997)

    Article  ADS  Google Scholar 

  57. W.H. Press et al.: Numerical Recipes ( Cambridge University Press, Cambridge 1986 )

    Google Scholar 

  58. D.H. Robertson, D.W. Brenner, J.W. Mintmire: Phys. Rev. B 45, 12592 (1992)

    Article  ADS  Google Scholar 

  59. J.W. Mintmire, C.T. White: Carbon 33, 893 (1995)

    Article  Google Scholar 

  60. A.J. Stone, D.J. Wales: Chem. Phys. Lett. 128, 501 (1986)

    Article  ADS  Google Scholar 

  61. R.L. Murry, D.L. Strout, G.K. Odom, G.E. Scuseria: Nature 366, 665 (1993)

    Article  ADS  Google Scholar 

  62. M.B. Nardelli, B.I. Yakobson, J. Bernholc: Phys. Rev. Lett. 81 4656 (1998)

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Esfarjani, K., Farajian, A.A., Hashi, Y., Kawazoe, Y. (2002). Electronic, Transport and Mechanical Properties of Carbon Nanotubes. In: Kawazoe, Y., Kondow, T., Ohno, K. (eds) Clusters and Nanomaterials. Springer Series in CLUSTER PHYSICS. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04812-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04812-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07522-3

  • Online ISBN: 978-3-662-04812-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics