Skip to main content

Strategies to Improve PAH Bioavailability: Addition of Surfactants, Ozonation and Application of Ultrasound

  • Chapter
Treatment of Contaminated Soil

Abstract

Hydrophobic compounds, such as polycyclic aromatic hydrocarbons (PAHs), mineral oils, or halogenated chemicals, represent pollutants of high ecotoxicological relevance at many contaminated sites. Most of these pollutants are biodegradable (Cerniglia 1992; van Hylckama Vlieg and Janssen 2000; Wischnak and Müller 2000) but their rate of biodegradation is limited by low bioavailability. In general, microbial uptake and degradation of pollutants predominantly occurs in the aqueous phase. Pollutants present as crystals (Stucki and Alexander 1987; Tiehm 1994) or in nonaqueous phase liquids (Mukherji and Weber Jr. 1998), as well as compounds sorbed by organic or inorganic matter (Guerin and Boyd 1997; Harms and Zehnder 1995), first have to be transferred into the aqueous phase before biodegradation is possible (Mahro 2000). Con-sequently, recently published models taking into account mass transfer and micro-biological parameters correlate well with measured biodegradation kinetics of hydrophobic model compounds (Ghoshal and Luthy 1998; Mulder et al. 1998a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdul AS, Gibson TL (1991) Laboratory studies of surfactant-enhanced washing of polychlorinated biphenyl from sandy material. Environ Sci Technol 25: 665–671

    Article  CAS  Google Scholar 

  • Almgren M, Grieser F, Thomas JK (1979) Dynamics and static aspects of solubilization of neutral arenes in ionic micellar solutions. J Am Chem Soc 101: 279–291

    Article  CAS  Google Scholar 

  • Atrat PG, Koch B, Szekalla B, Hörhold-Schubert C (1992) Application of newly synthesized detergents in the side chain degradation of plant sterols by Mycobacterium fortuitum. J Basic Microbiol 32: 147–157

    Article  CAS  Google Scholar 

  • Barczewski B, Josef R, Klaas N (2000) Surfactant enhanced extraction of PAH at a contaminated former gas production plant in pilot scale. In: Proc 7th Int FZKITNO Conf, Contaminated Soil 2000, Vol 2, Thomas Telford Publ, London, UK, pp 975–980

    Google Scholar 

  • Boldrin B, Tiehm A, Fritzsche C (1993) Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by a Mycobacterium spec. Appl Environ Microbiol 59: 1927–1930

    CAS  Google Scholar 

  • Brown RA, Nelson C, Leahy M (1997) Combining oxidation and bioremediation for the treatment of recalcitrant organics. In: Proc 4th Int In Situ On-Site Biorem Symp, Vol 4, Battelle Press, Columbus, Richland, pp 457–462

    Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3: 351–368

    Article  CAS  Google Scholar 

  • Choi H, Kim J-Y, Lim H, Cho J, Kang J-W, Kim K-S (2000) Oxidation of polycyclic aromatic hydrocarbons by ozone in the presence of sand. In: IWA 1st World Congress 03.-07.07. 2000, Paris, France, Vol II pp 477–484

    Google Scholar 

  • Cserhati T, Szoegyi M, Bordas B (1982) QSAR study on the biological activity on nonyl-phenyloxide polymers. Gen Physiol Biophys 1: 225–231

    Google Scholar 

  • Cserhati T, Szoegyi M, Bordas B, Dobrovolszky A (1984) Structural requirements for the membrane damaging effect of non homologous series of nonionic tensides. Quant Struct-Act Relat 3: 56–59

    Article  CAS  Google Scholar 

  • Cserhati T, Illes M, Nemes I (1991) Effect of non-ionic tensides on the growth of some soil bacteria. Appl Environ Microbiol 35: 115–118

    CAS  Google Scholar 

  • Edwards DA, Luthy RG, Liu Z (1991) Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environ Sci Technol 25: 127–133

    Article  CAS  Google Scholar 

  • Erickson DC, Loehr RC, Neuhauser EF (1993) PAH loss during bioremediation of manufactured gas plant site soils. Wat Res 27: 911–919

    Article  CAS  Google Scholar 

  • Fountain JC, Klimek A, Beikirch MG, Middleton TM (1991) The use of surfactants for in-situ extraction of organic pollutants from a contaminated aquifer. J Hazardous Materials 28: 295311

    Google Scholar 

  • Gannon OK, Bibring P, Raney K, Ward JA, Wilson DJ, Underwood JL, Debelak KA (1989) Soil clean up by in-situ surfactant flushing: III Laboratory results. Sep Sci Technol 24: 1073–1094

    Google Scholar 

  • Ghoshal S, Luthy RG (1998) Biodegradation kinetics of naphthalene in nonaqueous phase liquid-water mixed batch systems: comparison of model predictions and experimental results. Biotechnol Bioeng 57: 356–366

    Article  CAS  Google Scholar 

  • Guerin WF, Boyd SA (1992) Differential bioavailability of soil-sorbed naphthalene to two bacterial species. Appl Environ Microbiol 54: 1142–1152

    Google Scholar 

  • Guerin WF, Boyd SA (1997) Bioavailability of naphthalene associated with natural and synthetic sorbents. Wat Res 31: 1504–1512

    Article  CAS  Google Scholar 

  • Guha S, Jaffé PR (1996a) Bioavailability of hydrophobic compounds partitioned into the micellar phase of nonionic surfactants. Environ Sci Technol 30: 1382–1391

    Article  CAS  Google Scholar 

  • Guha S, Jaffé PR (1996b) Biodegradation kinetics of phenanthrene partitioned into the micellar phase of nonionic surfactants. Environ Sci Technol 30: 605–611

    Article  CAS  Google Scholar 

  • Guha S, Jaffé PR, Peters CA (1998) Bioavailability of mixtures of PAHs partitioned into the micellar phase of a nonionic surfactant. Environ Sci Technol 32: 2317–2324

    Article  CAS  Google Scholar 

  • Haeseler F, Stieber M, Werner P, Frimmel FH (1993) Ecotoxicological aspects of chemical pre-oxidation combined with subsequent microbial degradation of polycyclic aromatic hydrocarbons. In: Arendt F, Annokkée GJ, Bosman R, van den Brink WJ (eds) Contaminated Soil ‘83, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 1337–1344

    Google Scholar 

  • Harms H, Zehnder AJB (1994) Influence of substrate diffusion on degradation of dibenzofuran and 3-chlorodibenzofuran by attached and suspended bacteria. Appl Environ Microbiol 60: 2736–2745

    CAS  Google Scholar 

  • Harms H, Zehnder AJB (1995) Bioavailability of sorbed 3-chlorodibenzofuran. Appl Environ Microbiol 61: 27–33

    CAS  Google Scholar 

  • Harrison STL (1991) Bacterial cell disruption: a key unit operation in the recovery of intracellular products. Biotechnol Adv 9: 217–240

    Article  CAS  Google Scholar 

  • Hoigné J, Bader H (1975) Ozonation of water: role of hydroxyl radicals as oxidizing intermediates. Science 109: 782–784

    Google Scholar 

  • Hoigné J (1988) The chemistry of ozone in water. In: Stucki S (ed) Process technologies for water treatment, Plenum Press, New York, pp 121–143

    Chapter  Google Scholar 

  • Hua I, Thompson JE (2000) Inactivation of Escherichia coli by sonication at discrete ultrasonic frequencies. Wat Res 34: 3888–3893

    Article  CAS  Google Scholar 

  • Kästner M (2000) Degradation of aromatic and polyaromatic compounds. In: Klein J (ed) Biotechnology Vol 11b, Environmental Processes: Soil Decontamination, Wilex-VCH, Weinheim, pp 211–239

    Google Scholar 

  • Kaut CC (1997) Ãœber die Auswirkung einer Ozonbehandlung von Boden auf die natürliche organische Bodenmatrix. Dissertation Universität Karlsruhe, Forschungszentrum Karlsruhe GmbH

    Google Scholar 

  • Kile ED, Chiou CT (1989) Water solubility enhancements of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration. Environ Sci Technol 23: 832838

    Google Scholar 

  • Klevens HB (1950) Solubilization of polycyclic hydrocarbons. J Phys Colloid Chem 54: 283298

    Google Scholar 

  • Kotterman MJJ, Rietberg H-J, Hage A, Field JA (1998) Polycyclic aromatic hydrocarbon oxidation by the white-rot fungus Bjerkandera sp. strain BOS55 in the presence of nonionic surfactants. Biotechnol Bioeng 57: 220–227

    Article  CAS  Google Scholar 

  • Laha S, Luthy RG (1991) Inhibition of phenanthrene mineralization by nonionic surfactants in soil-water systems. Environ Sci Technol 25: 1920–1930

    Article  CAS  Google Scholar 

  • Luthy RG, Dzombak DA, Peters CA, Raswaswami A, Nakles DV, Nott BR (1994) Remediating tar-contaminated soils at manufactured gas plant sites. Environ Sci Technol 28: 266A - 276A

    Article  CAS  Google Scholar 

  • Mahro B (2000) Bioavailability of contaminants. In: Klein J (ed) Biotechnology Vol 1lb, Environmental Processes: Soil Decontamination, Wilex-VCH, Weinheim, pp 61–88

    Google Scholar 

  • Mark G, Tauber A, Laupert R, Schuchmann H-P, Schulz D, Mues A, von Sonntag C (1998) OH-radical formation by ultrasound in aqueous solution — Part II Terephthalate and Fricke dosimetry and the influence of various conditions on the sonolytic field. Ultrasonics Sonochem 5: 41–52

    Article  CAS  Google Scholar 

  • Mason T (1991) Practical sonochemistry: user’s guide to applications in chemistry and chemical engineering. Ellis Horword Ltd, Chichester, UK

    Google Scholar 

  • Mason T (1999) Ultrasound in environmental protection — an overview. In: Tiehm A, Neis U (eds) TU Hamburg–Harburg Reports on Sanitary Engineering 25: Ultrasound in Environmental Engineering (ISBN 3–930400–23–5), pp 1 – 9

    Google Scholar 

  • Mason T, Tiehm A (eds) (2001) Advances in Sonochemistry Vol 6: Ultrasound in Environmental Protection, Elsevier Publishers, Amsterdam, The Netherlands, in press

    Google Scholar 

  • Mihelcic JR, Lueking DR, Mitzell RJ, Stapleton JM (1993) Bioavailability of sorbed-and separate-phase chemicals. Biodegradation 4: 141–153

    Article  CAS  Google Scholar 

  • Mukherji S, Weber WJ Jr (1998) Mass transfer effects on microbial uptake of naphthalene from complex NAPLs. Biotechnol Bioeng 60: 750–760

    Article  CAS  Google Scholar 

  • Mulder H, Breure AM, Van Andel JG, Grotenhuis JTC, Rulkens WH (1998 a) Influence of hydrodynamic conditions on naphthalene dissolution and subsequent biodegradation. Biotechnol Bioeng 57: 145–154

    Google Scholar 

  • Mulder H, Breure AM, Van Honschooten D, Grotenhuis JTC, Van Andel JG, Rulkens WH (1998b) Effect of biofilm formation by Pseudomonas 8909N on the bioavailability of solid naphthalene. Appl Microbiol Biotechnol 50: 277–283

    Article  CAS  Google Scholar 

  • Mulder H, Breure AM, Van Andel JG, Grotenhuis JTC, Rulkens WH (2000) Effect of mass-transfer limitations on bioavailability of sorbed naphthalene in synthetic model soil matrices. Environ Toxicol Chem 19: 2224–2234

    Article  CAS  Google Scholar 

  • Myers D (1991) Surfaces, interfaces, and colloids; principles and applications. VCH Verlagsgesellschaft, Weinheim, Germany

    Google Scholar 

  • Ortega-Calvo JJ, Birman I, Alexander M (1995) Effect of varying the rate of partitioning of phenanthrene in nonaqueous-phase liquids on biodegradation in soil slurries. Environ Sci Technol 29: 2222–2225

    Article  CAS  Google Scholar 

  • Pennell KD, Abriola LM, Weber WJ Jr (1993) Surfactant-enhanced solubilization of residual dodecane in soil columns. 1. Experimental investigation. Environ Sci Technol 27: 2332–2340

    Google Scholar 

  • Pétrier C, Jiang Y, Lamy M-F (1998) Ultrasound and environment: sonochemical destruction of chloraromatic derivatives. Environ Sci Technol 32: 1316–1318

    Article  Google Scholar 

  • Pétrier C, Jiang Y, Francony A, Lamy MF (1999) Aromatics and chloroaromatics sonochemical degradation: yields and by–products. In: Tiehm A, Neis U (eds) TU Hamburg–Harburg Reports on Sanitary Engineering 25: Ultrasound in Environmental Engineering (ISBN 3930400–23–5), pp 23 – 37

    Google Scholar 

  • Portenlänger G, Heusinger H (1997) The influence of frequency on the mechanical and radical effects for the ultrasonic degradation of dextranes. Ultrasonics Sonochem 4: 127–130

    Article  Google Scholar 

  • Portenlänger G (1999) Mechanical and radical effects of ultrasound. In: Tiehm A, Neis U (eds) TU Hamburg–Harburg Reports on Sanitary Engineering 25: Ultrasound in Environmental Engineering (ISBN 3–930400–23–5), pp 11 – 22

    Google Scholar 

  • Scott JP, 011is DF (1995) Integration of chemical and biological oxidation processes for water treatment: review and recommendations. Environ Progr 14: 88–103

    Google Scholar 

  • Seibel F, Stieber M, Werner P, Frimmel FH (1995) Characterization of degradation products of PAH contaminated soil after ozone treatment. SPIE-proceedings of Environmental Monitoring and Harzardous Waste Site Remediation, Vol 2504, pp 86–97

    Google Scholar 

  • Seidel JP (1995) Ãœber die Anwendung von Ozon zum oxidativen Abbau polycyclischer aromatischer Kohlenwasserstoffe in Böden. Dissertation Universität Karlsruhe, Forschungszentrum Karlsruhe GmbH

    Google Scholar 

  • Sims RC, Overcash MR (1983) Fate of polynuclear aromatic compounds ( PNAs) in soil-plant systems. Residue Rev 88: 1–68

    Google Scholar 

  • Staehelin J, Hoigné J (1982) Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide. Environ Sci Technol 16: 676–681

    Article  CAS  Google Scholar 

  • Stucki G, Alexander M (1987) Role of dissolution rate and solubility in biodegradation of aromatic compounds. Appl Environ Microbiol 53: 292–297

    CAS  Google Scholar 

  • Tiehm A (1994) Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl Environ Microbiol 60: 258–263

    CAS  Google Scholar 

  • Tiehm A, Fritzsche C (1995) Utilization of solubilized and crystalline mixtures of polycyclic aromatic hydrocarbons by a Mycobacterium sp. Appl Microbiol Biotechnol 42: 964–968

    Article  CAS  Google Scholar 

  • Tiehm A, Stieber M, Werner P, Frimmel FH (1997) Surfactant-enhanced mobilization and biodegradation of polycyclic hydrocarbons in manufactured gas plant soil. Environ Sci Technol 31: 2570–2576

    Article  CAS  Google Scholar 

  • Tiehm A (1999) Combination of ultrasound and biodegradation: enhanced bioavailability of polycyclic aromatic hydrocarbons. In: Tiehm A, Neis U (eds) TU Hamburg–Harburg Reports on Sanitary Engineering 25: Ultrasound in Environmental Engineering (ISBN 3–930400–235), pp 167 – 180

    Google Scholar 

  • Tiehm A, Neis U (1999) Ultrasound enhanced biodegradation of phenanthrene. In: Wilhelm AM (ed) Proc 2nd Conf Ultrasound Processing, PROGREP, Toulouse, France, pp 165–170

    Google Scholar 

  • Tiehm A, Kohnagel I, Neis U (2000) Removal of chlorinated pollutants by a combination of ultrasound and biodegradation. In: IWA IS` World Congress 03.-07.07. 2000, Paris, France, Vol I, pp 177–184

    Google Scholar 

  • Tiehm A, Nickel N, Zellhorn M, Neis U (200la) Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Wat Res: in press

    Google Scholar 

  • Tiehm A, Ortfeld R, Schmidt 0 (200 lb) Ultrasound-enhanced bioavailability of solid naphthalene: in preparation

    Google Scholar 

  • Tsomides HJ, Hughes JB, Thomas M, Ward HC (1995) Effect of surfactant addition on phenanthrene biodegradation in sediments. Environ Toxicol Chem 14: 953–959

    Article  CAS  Google Scholar 

  • Young F R (1989) Cavitation. Mc Graw-Hill Book Company, Maidenhead, UK, pp 40–76

    Google Scholar 

  • Van Hylckama Vlieg JET, Janssen DB (2000) Bacterial degradation of aliphatic hydrocarbons. In: Klein J (ed) Biotechnology Vol 1 lb, Environmental Processes: Soil Decontamination, Wilex-VCH, Weinheim, Germany, pp 193–209

    Google Scholar 

  • Volkering F, Breure AM, Sterkenburg A, Van Andel JG (1992) Microbial degradation of poly-cyclic aromatic hydrocarbons: effect of substrate availability on bacterial growth kinetics. Appl Microbiol Biotechnol 36: 548–552

    Article  CAS  Google Scholar 

  • Volkering F, Breure AM, Van Andel JG, Rulkens WH (1995) Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Appl Environ Microbiol 61: 1699–1705

    CAS  Google Scholar 

  • Wang J-M, Marlowe EM, Miller-Maier RM, Brusseau ML (1998) Cyclodextrin-enhanced biodegradation of phenanthrene. Environ Sci Technol 32: 1907–1912

    Article  CAS  Google Scholar 

  • Weissenfels WD, Klewer H-J, Langhoff J (1992) Adsorption of polycyclic aromatic hydrocarbons (PAH’s) by soil particles: influence on biodegradability and biotoxicity. Appl Microbiol Biotechnol 36: 689–696

    Article  CAS  Google Scholar 

  • Wischnak C, Müller R (2000) Degradation of chlorinated compounds. In: Klein J (ed) Biotechnology Vol 1lb, Environmental Processes: Soil Decontamination, Wilex-VCH, Weinheim, Germany, pp 241–271

    Google Scholar 

  • Wodzinski RS, Bertolini D (1972) Physical state in which naphthalene and dibenzyl are utilized by bacteria. Appl Microbiol 23: 1077–1081

    CAS  Google Scholar 

  • Wodzinski RS, Coyle JE (1974) Physical state of phenanthrene for utilization by bacteria. Appl Microbiol 27: 1081–1084

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tiehm, A., Stieber, M. (2001). Strategies to Improve PAH Bioavailability: Addition of Surfactants, Ozonation and Application of Ultrasound. In: Stegmann, R., Brunner, G., Calmano, W., Matz, G. (eds) Treatment of Contaminated Soil. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04643-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04643-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07510-0

  • Online ISBN: 978-3-662-04643-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics