Skip to main content

Bacterial Strategies to Improve the Bioavailability of Hydrophobic Organic Pollutants

  • Chapter
Treatment of Contaminated Soil

Abstract

Bioremediation of polluted soil mostly depends on indigenous micro-organisms. The principle of engineered bioremediation is to stimulate those micro-organisms, which are able to degrade xenobiotic substrates (Aelion et al. 1987). The most often reported genera in degradation of anthropogenic pollutants include Ralstonia,Burkholderia, Comamonas, Arthrobacter, Mycobacterium,Nocardia, fluorescent Pseudomonas,Rhodococcus, and Sphingomonas (Haggblom and Valo 1995; Neilson 1995; Commandeur et al. 1995). In response to the introduction of electron acceptors (like oxygen) or nutrients to soil, specific degrader organisms will multiply. However, in spite of a potentially metabolically active biomass, in-situ bioremediation of soils polluted with hydrophobic organic pollutants (HOC) frequently results in slow pollutant degradation rates, high residual concentrations and, as a consequence, in limited clean-up efficiencies (Zhang et al. 1998; Luthy et al. 1994). The unequal spatial distribution of micro-organisms and pollutants in combination with physically retarded substrate diffusion are nowadays generally accepted as key limiting factors for efficient biodegradation of hydrophobic contaminants in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aelion CM, Swindoll CM, Pfaender FK (1987) Adaptation to and biodegradation of xenobiotic compounds by microbial communities from a pristine aquifer. Appl Environ Microbiol 53: 2212–2217

    CAS  Google Scholar 

  • Aiba S, Moritz V, Someya J, Haung KL (1969) Cultivation of yeast cells by using n-alkanes as the sole carbon source. I Batch culture. J Ferm Technol 47: 203–210

    Google Scholar 

  • Bai G, Brusseau ML, Miller RM (1997) Influence of a rhamnolipid biosurfactant on the transport of bacteria through a sandy soil. Appl Environ Microbiol 63: 1866–1873

    CAS  Google Scholar 

  • Balkwil DL, Drake GR, Reeves RH, Frederickson JK, White DC, Ringelberg DB, Chandler DP, Romine MF, Kennedy DW, Spadoni CM (1997) Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp nov, Sphingomonas subterranea sp nov, and Sphingomonas stygia sp nov Int J Syst Bacteriol 47: 191–201

    Google Scholar 

  • Bastiaens L, Springael D, Wattiau P, Harms H, Wachter RD, Verachtert H, Diels L (2000) Isolation of new polycyclic aromatic hydrocarbon ( PAH) degrading bacteria using PAH sorbing carriers. Appl Environ Microbiol 66: 1834–1843

    Google Scholar 

  • Beurskens JEM, Dekker CGC, Johnkhoff J, Pompstra L (1993) Microbial dechlorination of hexachlorobenzene in a sedimentation area of Rhine river. Biogeochemistry 19: 61–81

    Article  Google Scholar 

  • Bouchez M, Blanchet D, Vandecasteele JP (1997) An interfacial uptake mechanism for the degradation of pyrene by a Rhodococcus strain. Microbiology 143: 1087–1093

    Article  Google Scholar 

  • Bosma TNP, Middeldorp PJM, Schraa G, Zehnder AJB (1997) Mass transfer limitation of bio-transformation: Quantifying bioavailability. Environ Sci Technol 31: 248–252

    Google Scholar 

  • Bouchez M, Blanchet D, Vandecasteele J-P (1995) Substrate availability in phenanthrene bio-degradation: transfer mechanism and influence on metabolism. Appl Microbiol Biotechnol 43: 952–960

    Article  CAS  Google Scholar 

  • Button KD (1985) Kinetics of nutrient-limited transport and microbial growth. Microbiol Rev 49: 270–297.

    CAS  Google Scholar 

  • Calvillo YM, Alexander, M. (1996) Mechanisms of microbial utilization of biphenyl sorbed to polyacrylic beads. Appl. Microbiol. Biotechnol., 45: 383–390

    Google Scholar 

  • Cameotra SS, Singh HD, Hazarika AK, Baruah JN (1983) Mode of uptake of insoluble solid substrates by microorganisms. II: Uptake of solid n-alkanes by yeast and bacterial species. Biotechnol Bioeng 25: 2945–2956

    Google Scholar 

  • Crocker FH, Guerin WF, Boyd SA (1995) Bioavailability of naphthalene sorbed to cationic surfactant-modified smectite clay. Environ Sci Technol 29: 2593–2958

    Article  Google Scholar 

  • Commandeur LCM, Eyseren van HE, Opmeer MR, Govers HAJ, Parsons JR (1995) Biodegradation kinetics of highly chlorinated biphenyls by Alcaligenes sp. JB1 in an aerobic continuous culture system. Environ Sci Technol 29: 3038–3043

    Article  CAS  Google Scholar 

  • Costerton JW, Lappin-Scott HM (1989) Behavior of bacteria in biofilms. ASM news: 650–654 Deware M, Alexander M (1995) Bacterial transport and phenanthrene biodegradation in soil and aquifer sand. Soil Sci Soc Am J 59: 1316–1320

    Google Scholar 

  • Edmonds RL (1976) Survival of coliform bacteria in sewage sludge applied to a forest clearcut and potential movement into groundwater. Appl Environ Microbiol 32: 537–546

    CAS  Google Scholar 

  • Efroymson RA, Alexander M (1991) Biodegradation by an Arthrobacter species of hydrocarbon partitioned into an organic solvent. Appl Environ Microbiol 57: 1441–1447

    CAS  Google Scholar 

  • Efroymson RA, Alexander M (1994) Role of partitioning in biodegradation of phenanthrene dissolved in nonaqueous-phase liquids. Environ Sci Technol 28: 1172–1179

    Article  CAS  Google Scholar 

  • Flemming HC (1998) Relevance of biofilms for biodeterioration of surfaces of polymeric materials. Polymer Degrad Stabil 59: 309–315

    Article  CAS  Google Scholar 

  • Friedrich M, Grosser RJ, Kern A, Inskeep WP, Ward DM (2000) Effect of model sorptive phases on phenanthrene biodegradation: Molecular analysis of enrichments and isolates suggests selection based on bioavailability. Appl Environ Microbiol 66: 2703–2710

    Google Scholar 

  • Gosh U, Gillette JS, Luthy R, Zare RN (2000) Microscale location, characterization, and association of polycyclic aromatic hydrocarbons on harbor sediment particles. Environ Sci Technol 34: 1729–1736

    Article  Google Scholar 

  • Goswami P, Singh HD (1990) Different modes of hydrocarbon uptake by two Pseudomonas species. Biotechnol Bioeng 37: 1–11

    Article  Google Scholar 

  • Gray MR, Banerjee DK, Fedorak PM, Hashimoto A, Masliyah JH, Pickard MA (1994) Biological remediation of anthracene-contaminated soil in rotating bioreactors. Appl Microbiol Biotechnol 40: 933–940

    Article  CAS  Google Scholar 

  • Gray TRG, Parkinson D (1968) The Ecology of Soil Bacteria. Liverpool University Press, Liverpool, UK

    Google Scholar 

  • Gross MJ, Logan BE (1995) Influence of different chemical treatments on transport of Alcali-genes paradoxus in porous media. Appl Environ Microbiol 61: 1750–1756

    CAS  Google Scholar 

  • Grosser RJ, Friedrich M, Ward DM, Inskeep WP (2000) Effect of model sorptive phases on phenanthrene biodegradation: different enrichment conditions influence bioavailability and selection of phenanthrene-degrading isolates. Appl Environ Microbiol 66: 2695–2702

    Article  CAS  Google Scholar 

  • Guerin WF, Boyd SA (1992) Differential bioavailability of soil-sorbed naphthalene to two bacterial species. Appl Environ Microbiol 58: 1142–1152

    CAS  Google Scholar 

  • Guerin WF, Boyd SA (1997) Bioavailability of naphthalene associated with natural and synthetic sorbents. Water Res 31: 1504–1512

    Article  CAS  Google Scholar 

  • Häggblom MM, Valo RJ (1995) Bioremediation of chlorophenol wastes. In: Microbial transformation and degradation of toxic organic chemicals (eds Young L, Cerniglia C ), pp 389–434. Wiley-Liss, Inc, New York (NY)

    Google Scholar 

  • Harms H (1996) Bacterial growth on distant naphthalene diffusing through water, air, water-saturated, and unsaturated porous media. Appl Environ Microbiol 62: 2286–2293

    CAS  Google Scholar 

  • Harms H, Bosma TNP (1997) Mass transfer limitation of microbial growth and pollutant degra-dation. J Ind Microbiol Biotechnol 18: 97–105

    Article  CAS  Google Scholar 

  • Harms H, Zehnder AJB (1994) Influence of substrate diffusion on degradation of dibenzofuran and 3-chlorodibenzofuran by attached and suspended bacteria. Appl Environ Microbiol 60: 2736–2745

    CAS  Google Scholar 

  • Harms H, Zehnder MB (1995) Bioavailability of sorbed 3-chlorodibenzofuran. Appl Environ Microbiol 61: 27–33

    CAS  Google Scholar 

  • Hinchee RE, Fredrickson J, Alleman BC (1995) Bioaugmentation for Site Remediation. Battelle Press, Columbus, Ohio

    Google Scholar 

  • Kanaly RA, Harayama S (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons. J Bacteriol 182: 2059–2067

    Article  CAS  Google Scholar 

  • Kilbertus G (1980) Etude des microhabitats contenus dans les aggrégats du soil. Leur relation avec la biomass bactérienne et la taille des procaryotes présents. Rev Ecol Biol Soil 17: 543557

    Google Scholar 

  • Kirschner-Zilber I, Rosenberg E, Gutnick G (1980) Incorporation of 32P and growth of Pseudomonas UP-2 on n-teracosane. Appl Environ Microbiol 40: 1086–1093

    Google Scholar 

  • Kleespies M, Kroppenstedt RM, Rainey FA, Webb LE, Stackebrandt E (1996) Mycobacterium hodleri sp. nov., a new member of the fast growing mycobacteria capable of degrading poly-cyclic aromatic hydrocarbons. Int J Syst Bacteriol 46: 683–687

    Article  CAS  Google Scholar 

  • Koch AK, Käppeli 0, Fiechter A, Reiser J (1991) Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J Bacteriol 173: 4212–4219

    CAS  Google Scholar 

  • KovTrrovâ-Kovar K, and Egli T (1968) Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microbiol Mol Biol Rev 62: 646–666

    Google Scholar 

  • Laha S, Luthy RG (1991) Inhibition of phenanthrene mineralization by nonionic surfactants in soil-water systems. Environ Sci Technol 25: 1921–1930

    Article  Google Scholar 

  • Lahlou M, Harms H, Ortega J-J (2000) Influence of individual soil components on the transport of polycyclic aromatic hydrocarbon-degrading bacteria. Environ Sci Technol: in press

    Google Scholar 

  • Lahlou M, Ortega-Calvo JJ (1999) Bioavailability of labile and desorption-resistant phenanthrene sorbed to montmorillonite clay containing humic acids. Environ Toxicol Chem 18: 2729–2735

    Article  CAS  Google Scholar 

  • Li Q, Logan BE (1999) Enhancing bacterial transport for bioaugmentation of aquifers using low ionic strength solutions and surfactants. Water Research 33: 1090–1100

    Article  CAS  Google Scholar 

  • Linos A, Berekaa MM, Reichelt R, Keller U, Schmitt J, Flemming HC, Kroppenstedt RM, Steinbuchel A (2000) Biodegradation of cis-l,4-polyisoprene rubbers by distinct Actinomycetes: Microbial strategies and detailled surface analysis. Environ Appl Microbiol 66: 16391645

    Google Scholar 

  • Liu Z, Jacobson AM, Luthy RG (1995) Biodegradation of naphthalene in nonionic surfactant systems. Appl Environ Microbiol 51: 145–151

    Google Scholar 

  • Luthy RG, Aiken GR, Brusseau ML, Cunningham SD, Gschwend PM, Pignatello JJ, Reinhard M, Traina SJ, Weber WJ, Westall JC (1997) Sequestration of hydrophobic organic contaminants by geosorbents. Environ Sci Technol 31: 3341–3347

    Article  CAS  Google Scholar 

  • Luthy RG, Dzombak DA, Peters CA, Roy SB, Ramaswami A, Nakles DV, Nott BR (1994) Remediating tar-contaminated soils at manufactured gas plant sites. Environ Sci Technol 28: 266A - 277A

    Article  CAS  Google Scholar 

  • Madsen EL, Alexander M (1982) Transport of Rhizobium and Pseudomonas through soil. Soil Sci Am J 46: 557–560

    Article  Google Scholar 

  • McLee AG, Davies SL (1972) Linear growth of a Torulopsis sp. on n-alkanes. Canad J Microbiol 18: 315–319

    Article  CAS  Google Scholar 

  • van der Mei HC, Rosenberg M, Busscher HJ (1991) Assessment of microbial cell surface hydrophobicity. In: Microbial Cell Surface Analysis (eds N Mozes, PS Handley, HT Busscher, PG Rouxhet ), pp 263–287. VCH Publishers Inc, New York, Weinheim, Cambridge

    Google Scholar 

  • Mihelcic JR, Luthy RG (1991) Sorption and microbial degradation of naphthalene in soil water suspensions under denitrification conditions. Environ Sci Technol 25: 169–177

    Article  CAS  Google Scholar 

  • Mulder H, Breure AM, Andel JGV, Grotenhuis JT, Rulkens WH (1998) Influence of hydrodynamic conditions on naphthalene dissolution and subsequent biodegradation. Biotechnol Bioeng 57: 145–154

    Article  CAS  Google Scholar 

  • Mulder H, Breure AM, Honschooten Dv, Grotenhuis JT, Andel JGV, Rulkens WH (1998) Effect of biofilm formation by Pseudomonas 8909N on the bioavailability of solid naphthalene. Appl Microbiol Biotechnol 50: 277–283

    Article  CAS  Google Scholar 

  • Neilson AH (1995) An environmental perspective on the biodegradation of organochlorine xenobiotics. Int Biodeteriorat Biodegrad 37: 3–21

    Article  Google Scholar 

  • Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Reviews 60: 151–166

    CAS  Google Scholar 

  • Noordman WH, Ji W, Brusseau ML, Janssen DB (1998) Effects of rhamnolipid biosurfactants on removal of phenanthrene from soil. Environ Sci Technol 32: 1806–1812

    Article  CAS  Google Scholar 

  • Ogram AV, Jessup RE, Ou LT, Rao PS (1985) Effects of sorption on biological degradation rates of (2,4-dichlorophenoxy)acetic acid in soils. Appl Environ Microbiol 49: 582–587

    CAS  Google Scholar 

  • Ortega-Calvo JJ, Fesch C, Harms H (1999) Biodegradation of sorbed 2,4-dinitrotoluene in a clay-rich, aggregated porous medium. Environ Sci Technol 33: 3737–3742

    Article  CAS  Google Scholar 

  • Ortega-Calvo JJ, Alexander M (1994) Roles of bacterial attachment and spontaneous partitioniing in the biodegradation of naphthalene initially present in nonaqueous-phase liquids. Appl Environ Microbiol 60: 2643–2646

    CAS  Google Scholar 

  • Pignatello JJ, Xing B (1996) Mechanism of slow sorption of organic chemicals to natural particles. Environ Sci Technol 30: 1–11

    Article  CAS  Google Scholar 

  • Pirt SJ (1965) The maintenance energy of bacteria in growing cultures. Proc R Soc B 163: 224231

    Google Scholar 

  • Postma J, Veen van JA (1990) Habitable pore space and population dynamics of Rhizobium leguminosarium biovar trifolii introduced into soil. Microb Ecol 19: 149–161

    Article  Google Scholar 

  • Ramaswami A, Ghoshal S, Luthy RG (1997) Mass transfer and bioavailability of PAH com-pounds in coal tar systems. 2. Experimental Evaluations. Environ Sci Technol 31: 2268–2275

    Google Scholar 

  • Ramaswami A, Luthy RG (1997) Mass transfer and bioavailability of PAH compounds in coal tar systems. 1. Model development. Environ Sci Technol 31: 2260–2267

    Google Scholar 

  • Rijnaarts HHM, Bachmann A, Jumelet JC, Zehnder AJB (1990) Effect of desorption and intraparticle mass transfer on the aerobic biomineralization of a-hexachlorocyclohexane in a contaminated calcareous soil. Environ Sci Technol 24: 1349–1354

    Article  CAS  Google Scholar 

  • Rosenberg M, Rosenberg E (1981) Role of adherence in growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. J Bacteriol 148: 51–57

    CAS  Google Scholar 

  • Ryan JN, Elimelech M, Ard RA, Harvey RW, Johnson PR (1999) Bacteriophage PRD1 and silica colloid transport and recovery in iron oxide-coated sand aquifer. Environ Sci Technol 33: 63–73

    Article  CAS  Google Scholar 

  • Schmidt SK, Alexander M, Shuler ML (1985) Predicting threshold concentrations of organic substrates for bacterial growth. J Theor Biol 114: 1–8

    Article  CAS  Google Scholar 

  • Schwarzenbach RP, Gschwend PM, Imboden DM (1993) Environmental Organic Chemistry. John Wiley & Sons, Inc, New York, NY

    Google Scholar 

  • Scow KM, Johnson CR (1997) Effect of sorption on biodegradation of soil pollutants. Adv Agron 58: 168–223

    Google Scholar 

  • Stelmack PL, Gray MT, Pickard MA (1999) Bacterial adhesion to soil contaminants in the presence of surfactants. Appl Environ Microbiol 65: 163–168

    CAS  Google Scholar 

  • Stucki G, Alexander M (1987) Role of dissolution and solubility in biodegradation of aromatic compounds. Appl Environ Microbiol 53: 292–297

    CAS  Google Scholar 

  • Tang WC, White JC, Alexander M (1998) Utilization of sorbed compounds by microorganisms isolated for that purpose. Appl Microbiol Technol 49: 117–121

    Article  CAS  Google Scholar 

  • Tate III RL (1995) Soil Microbiology. John Wiley & Sons, Inc, New York, Chichester, Brisbane, Toronto, Singapore

    Google Scholar 

  • Thomas JM, Alexander M (1987) Colonization and mineralization of palmitic acid by Pseudomonas pseudoflava. Microb Ecol 14: 75–80

    Article  CAS  Google Scholar 

  • Thomas JM, Yordy JR, Amador JA, Alexander M (1986) Rates of dissolution and biodegrada-tion of water-insoluble organic compounds. Appl Environ Microbiol 52: 290–296

    CAS  Google Scholar 

  • Tiehm A (1994) Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl Environ Microbiol 60: 258–263

    CAS  Google Scholar 

  • Tiehm A, Fritzsche C (1995) Utilization of solubilized and crystalline mixtures of polycyclic aromatic hydrocarbons by a Mycobacterium sp. Appl Microbiol Biotechnol 42: 964–968

    Article  CAS  Google Scholar 

  • Tongpim S, Pickard MA (1996) Growth of Rhodococus S1 on anthracene. Can J Microbiol 42: 289–294

    Article  Google Scholar 

  • Tros ME, Schraa G, Zehnder AJB, Bosma TNP (1998) Anomalies in the transformation of 3chlorobenzoate in percolation columns with Pseudomonas sp. strain B13. Water Sci Tech 37: 89–96

    CAS  Google Scholar 

  • Uden van N (1967) Transport-limited growth in the chemostat and its competitive inhibition; a theoretical treatment. Arch Microbiol 58: 145–154

    Google Scholar 

  • Volkering F, Breure AM, Andel van JG (1993) Effect of micro-organisms on the bioavailability and biodegradation of crystalline naphthalene. Appl Microbiol Biotechnol 40: 535–540

    Article  CAS  Google Scholar 

  • Volkering F, Breure AM, Andel van JG, Rulkens WH (1995) Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Appl Environ Microbiol 61: 1699–1705

    CAS  Google Scholar 

  • Volkering F, Breure AM, Rulkens WH (1998) Microbial aspects of surfactant use for biological soil remediation. Biodegradation 8: 401–417

    Article  CAS  Google Scholar 

  • Volkering F, Breure AM, Strekenburg A, Andel JGv (1992) Microbial degradation of polycyclic aromatic hydrocarbons: effect of substrate availability on bacterial growth kinetics. Appl Microbiol Biotechnol 36: 548–552

    Article  CAS  Google Scholar 

  • Weast RC (ed) (1984) Handbook of Chemistry and Physics, 64th edition. CRC Press, Inc, Boca Raton

    Google Scholar 

  • Willumsen PA, Karlson U (1997) Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactants and bioemulsifiers. Biodegradation 7: 415–423

    Article  Google Scholar 

  • Willumsen PA, Karlson U, Pritchard PH (1998) Response of fluoranthene-degrading bacteria to surfactants. Appl Microbiol Biotechnol 50: 475–483

    Article  CAS  Google Scholar 

  • Wodzinski RS, Bertolini D (1972) Physical state in which naphthalene and biphenyl are utilized by bacteria. Appl Microbiol 23: 1077–1081

    CAS  Google Scholar 

  • Wodzinski RS, Coyle JE (1974) Physical state of phenanthrene for utilization by bacteria. Appl Microbiol 27: 1081–1084

    CAS  Google Scholar 

  • Wodzinski RS, Johnson MJ (1968) Yields of bacterial cells from hydrocarbons. Appl Microbiol 16: 1886–1891

    CAS  Google Scholar 

  • Zhang WX, Bouwer EJ, Ball WP (1998) Bioavailability of hydrophobic organic contaminants: effects and implications of sorption-related mass transfer on bioremediation. Ground Water Monit R 18: 126–138

    Article  Google Scholar 

  • Zhang Y, Maier WJ, Miller RM (1997) Effect of rhamnolipids on the dissolution, bioavailability, and biodegradation of phenanthrene. Environ Sci Technol 31: 2211–2217

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wick, L.Y., Springael, D., Harms, H. (2001). Bacterial Strategies to Improve the Bioavailability of Hydrophobic Organic Pollutants. In: Stegmann, R., Brunner, G., Calmano, W., Matz, G. (eds) Treatment of Contaminated Soil. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04643-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04643-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07510-0

  • Online ISBN: 978-3-662-04643-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics