Skip to main content

Stability and Instability of Relativistic Electrons in Classical Electromagnetic Fields

  • Chapter
The Stability of Matter: From Atoms to Stars

Abstract

The stability of matter composed of electrons and static nuclei is investigated for a relativistic dynamics for the electrons given by a suitably projected Dirac operator and with Coulomb interactions. In addition there is an arbitrary classical magnetic field of finite energy. Despite the previously known facts that ordinary nonrelativistic matter with magnetic fields, or relativistic matter without magnetic fields, is already unstable when a, the fine structure constant, is too large, it is noteworthy that the combination of the two is still stable provided the projection onto the positive energy states of the Dirac operator, which defines the electron, is chosen properly. A good choice is to include the magnetic field in the definition. A bad choice, which always leads to instability, is the usual one in which the positive energy states are defined by the free Dirac operator. Both assertions are proved here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. A. Bethe and E. E. Salpeter. Quantum mechanics of one- and two-electron atoms. In S. Flügge, editor, Handbuch der Physik, XXXV, pages 88–436. Springer, Berlin, 1 edition, 1957.

    Google Scholar 

  2. M. S. Birman, L. S. Koplienko, and M. Z. Solomyak. Estimates for the spectrum of the difference between fractional powers of two self-adjoint operators. Soviet Mathematics 19(3): 1–6, 1975. Translation of Izvestija vyssich.

    Google Scholar 

  3. G. Brown and D. Ravenhall. On the interaction of two electrons. Proc. Roy. Soc. London A 208(A 1095): 552–559, September 1951.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. L. Bugliaro, J. Fröhlich, G. M. Graf, J. Stubbe, and C. Fefferman. A Lieb-Thirring bound for a magnetic Pauli Hamiltonian. Preprint, ETH-TH/96–31, 1996.

    Google Scholar 

  5. J. G. Conlon. The ground state energy of a classical gas. Commun. Math. Phys. 94(4): 439–458, August 1984.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. I. Daubechies. An uncertainty principle for Fermions with generalized kinetic energy. Commun. Math. Phys. 90: 511–520, September 1983.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. F. J. Dyson and A. Lenard. Stability of matter I. J. Math. Phys. 8: 423–434, 1967.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. F. J. Dyson and A. Lenard. Stability of matter II. J. Math. Phys. 9: 698–711, 1967.

    MathSciNet  Google Scholar 

  9. W. D. Evans, P. Perry, and H. Siedentop. The spectrum of relativistic one-electron atoms according to Bethe and Salpeter. Commun. Math. Phys. 18:733–746, July 1996.

    Article  MathSciNet  ADS  Google Scholar 

  10. P. Federbush. A new approach to the stability of matter problem. I. J. Math. Phys. 16: 347–351, 1975.

    Article  MathSciNet  ADS  Google Scholar 

  11. C. Fefferman. Stability of relativistic matter with magnetic fields. Proc. Nat. Acad. Sei. USA 92:5006–5007, 1995.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. C. Fefferman, J. Fröhlich, and G. M. Graf. Stability of ultraviolet-cutoff quantum electrodynamics with non-relativistic matter. Texas Math. Phys. Preprint server 96–379, 1996.

    Google Scholar 

  13. J. Fröhlich, E. H. Lieb, and M. Loss. Stability of Coulomb systems with magnetic fields. I: The one-electron atom. Commun. Math. Phys. 104:251–270, 1986.

    Article  ADS  MATH  Google Scholar 

  14. Y. Ishikawa and K. Koc. Relativistic many-body perturbation theory based on the no-pair Dirac Coulomb-Breit Hamiltonian: Relativistic correlation energies for the noble-gas sequence through Rn (Z = 86), the group-IIB atoms through Hg, and the ions of Ne isoelectronic sequence. Phys. Rev. A 50(6):4733–4742, December 1994.

    Article  ADS  Google Scholar 

  15. H. J. A. Jensen, K. G. Dyall, T. Saue, and K. Faegri, Jr., Relativistic four-component multiconfigurational self-consistent-field theory for molecules: Formalism. J. Chem. Physics 104(11): 4083p–4097, March 1996.

    Article  ADS  Google Scholar 

  16. E. H. Lieb. Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Annals of Mathematics 118:349–374, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  17. E. H. Lieb. On characteristic exponents in turbulence. Commun. Math. Phys. 92:473–480, 1984.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. E. H. Lieb and M. Loss. Stability of Coulomb systems with magnetic fields. II: The many-electron atom and the one-electron molecule. Commun. Math. Phys. 104: 271–282, 1986.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. E. H. Lieb, M. Loss, and H. Siedentop. Stability of relativistic matter via Thomas-Fermi theory. Helv. Phys. Acta 69: 974–984, 1996.

    MathSciNet  MATH  Google Scholar 

  20. E. H. Lieb, M. Loss, and J. P. Solovej. Stability of matter in magnetic fields. Phys. Rev. Lett. 75(6):985–989, August 1995.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. E. H. Lieb and W. E. Thirring. Bound for the kinetic energy of Fermions which proves the stability of matter. Phys. Rev. Lett. 35(11):687–689, September 1975. Erratum: Phys. Rev. Lett. 36(16):11116, October 1975.

    Article  ADS  Google Scholar 

  22. E. H. Lieb and W. E. Thirring. Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. In E. H. Lieb, B. Simon, and A. S. Wightman, editors, Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann. Princeton University Press, Princeton, 1976.

    Google Scholar 

  23. E. H. Lieb and H.-T. Yau. The stability and instability of relativistic matter. Common. Math. Phys. 118:177–213, 1988.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. J. Sucher. Foundations of the relativistic theory of many-electron atoms. Phys. Rev. A 22(2):348–362, August 1980.

    Article  MathSciNet  ADS  Google Scholar 

  25. J. Sucher. Foundations of the relativistic theory of many-electron bound states. International Journal of Quantum Chemistry 25:3–21, 1984.

    Article  Google Scholar 

  26. J. Sucher. Relativistic many-electron Hamiltonians. Phys. Scripta 36: 271–281, 1987.

    Article  ADS  Google Scholar 

  27. W. Thirring, ed. The Stability of Matter. From Atoms to Stars, Selecta of Elliott H. Lieh, Springer-Verlag, Berlin, Heidelberg, New York, 1997.

    Google Scholar 

  28. E. H. Lieb, H. Siedentop, and J. P. Solovej. Stability of relativistic matter with magnetic fields. Phys. Rev. Lett. 79:1785, 1997.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lieb, E.H., Siedentop, H., Solovej, J.P. (2001). Stability and Instability of Relativistic Electrons in Classical Electromagnetic Fields. In: Thirring, W. (eds) The Stability of Matter: From Atoms to Stars. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04360-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04360-8_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04362-2

  • Online ISBN: 978-3-662-04360-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics