Skip to main content

Stability of Relativistic Matter via Thomas—Fermi Theory

  • Chapter
The Stability of Matter: From Atoms to Stars

Abstract

A Thomas-Fermi-Weizsäcker type theory is constructed, by means of which we are able to give a relatively simple proof of the stability of relativistic matter. Our procedure has the advantage over previous ones in that the lower bound on the critical value of the fine structure constant, a, is raised from 0.016 to 0.77 (the critical value is known to be less than 2.72). When α = 1/137, the largest nuclear charge is 59 (compared to the known optimum value 87). Apart from this, our method is simple, for it parallels the original Lieb-Thirring proof of stability of nonrelativistic matter, and it adds another perspective on the subject.

This article is dedicated to our colleagues, teachers, and coauthors Klaus Hepp and Walter Hunziker on the occasion of their sexagesimal birthdays. Their enthusiasm for quantum mechanics as an unending source of interesting physics and mathematics has influenced many.

Work partially supported by U.S. National Science Foundation grant PHY95–13072.

Work partially supported by U.S. National Science Foundation grant DMS95–00840.

Work partially supported by European Union, grant ERBFMRXCT960001.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Conlon, J.G., The ground state energy of a classical gas. Commun. Math. Phys. 94, 439–458 (1984).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Daubechies, L, An uncertainty principle for fermions with generalized kinetic energy, Commun. Math. Phys. 90, 511–520 (1983).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Firsov, O.B., Calculation of the interaction potential of atoms for small nuclear separations, Sov. Phys. JETP 5, 1192–1196 (1957).

    MATH  Google Scholar 

  4. Hoffmann-Ostenhof, M. and Hoffman-Ostenhof, T., Schrödinger inequalities and asymptotic behavior of the electronic density of atoms and molecules, Phys. Rev. A 16, 1782–1785 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  5. Kato, T., Remarks on Schrödinger operators with vector potentials. Int. Eq. Operator Theory 1, 103–113 (1978).

    Article  MATH  Google Scholar 

  6. Leinfelder, H., Simader, C, Schrödinger operators with singular magnetic vector potentials, Math. Z. 176, 1–19 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  7. Lieb, E.H. Thomas-Fermi and related theories of atoms and molecules, Rev. Mod. Phys. 53 603–641 (1981). Errata, ibid 54, 311 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  8. Lieb, E.H., Loss, M. and Solovej, J.P., Stability of Matter in Magnetic Fields, Phys. Rev. Lett. 75, 985–989 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Lieb, E.H. and Oxford, S., Improved lower bound on the indirect Coulomb energy, Int. J. Quant. Chem. 19, 427–439 (1981).

    Article  Google Scholar 

  10. Lieb, E.H. and Yau, H-T., The stability and instability of relativistic matter, Commun. Math. Phys. 118, 177–213 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Lieb, E.H., and Thirring, W.E., Bound for the kinetic energy of fermions which proves the stability of matter, Phys. Rev. Lett. 35, 687–689 (1975). Erratum, ibid, 1116.

    Article  ADS  Google Scholar 

  12. Rockafellar, R.T., Convex Analysis, Princeton University Press (1970).

    MATH  Google Scholar 

  13. Simon, B., Maximal and minimal Schrödinger forms, J. Opt. Theory 1, 37–47 (1979).

    MATH  Google Scholar 

  14. Simon, B., Kato’s inequality and the comparison of semigroups, J. Funct. Anal. 32, 97–101 (1979).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lieb, E.H., Loss, M., Siedentop, H. (2001). Stability of Relativistic Matter via Thomas—Fermi Theory. In: Thirring, W. (eds) The Stability of Matter: From Atoms to Stars. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04360-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04360-8_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04362-2

  • Online ISBN: 978-3-662-04360-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics