Skip to main content

The Chandrasekhar Theory of Stellar Collapse as the Limit of Quantum Mechanics

  • Chapter
The Stability of Matter: From Atoms to Stars

Abstract

Starting with a “relativistic” Schrödinger Hamiltonian for neutral gravitating particles, we prove that as the particle number N→∞ and the gravitation constant G→0 we obtain the well known semiclassical theory for the ground state of stars. For fermions; the correct limit is to fix GN 2/3 and the Chandrasekhar formula is obtained. For bosons the correct limit is to fix GN and a Hartree type equation is obtained. In the fermion case we also prove that the semiclassical equation has a unique solution — a fact which had not been established previously.

Dedicated to Walter Thirring on hid 60th birthday

Work partially supported by U.S. National Science Foundation grant PHY 85–15288-A01

Work supported by Alfred Sloan Foundation dissertation Fellowship

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Auchmuty, J., Beals, R.: Variational solutions of some nonlinear free boundary problems. Arch. Ration. Mech. Anal. 43, 255–271 (1971). See also Models of rotating stars. Astrophys. J. 165, L79–L82 (1971)

    MathSciNet  MATH  Google Scholar 

  2. Chandrasekhar, S. : Phil. Mag. 11, 592 (1931)

    Google Scholar 

  3. Chandrasekhar, S. : Astrophys. J. 74, 81 (1931)

    Article  ADS  MATH  Google Scholar 

  4. Chandrasekhar, S. : Monthly Notices Roy. Astron. Soc. 91, 456 (1931)

    ADS  Google Scholar 

  5. Chandrasekhar, S. : Rev. Mod. Phys. 56, 137 (1984)

    Article  ADS  Google Scholar 

  6. Conlon, J. : The ground state energy of a classical gas. Commun. Math. Phys. 94, 439–458 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Daubechies, I.: An uncertainty principle for fermions with generalized kinetic energy. Commun. Math. Phys. 90, 511–520 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Daubechies, I., Lieb, E.H.: One-electron relativistic molecules with Coulomb interaction. Commun. Math. Phys. 90, 497–510 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Fefferman, C., de la Llave, R. : Relativistic stability of matter. I. Rev. Math. Iberoamericana 2, 119–215(1986)

    Article  Google Scholar 

  10. Fowler, R.H.: Monthly Notices Roy. Astron. Soc. 87, 114 (1926)

    ADS  Google Scholar 

  11. Herbst, I.: Spectral theory of the operator (p 2 + m 2 ) 112 ze 2 /r. Commun. Math. Phys. 53, 285–294 (1977)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Herbst, I.: Errata ibid. 55, 316 (1977)

    ADS  Google Scholar 

  13. Kato, T. : Perturbation theory for linear operators. Berlin, Heidelberg, New York: Springer 1966. See Remark 5.12, p. 307

    Book  MATH  Google Scholar 

  14. Kovalenko, V., Perelmuter, M., Semenov, Ya.: Schrödinger operators with. J. Math. Phys. 22, 1033–1044 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Landau, L.: Phys. Z. Sowjetunion 1, 285 (1932)

    MATH  Google Scholar 

  16. Lieb, E.: The number of bound states of one-body Schrödinger operators and the Weyl problem. Proc. Am. Math. Soc. Symp. Pure Math. 36, 241–252 (1980). See also: Bounds on the eigenvalues of the Laplace and Schrödinger operators. Bull. Am. Math. Soc. 82, 751–753 (1976)

    Article  MathSciNet  Google Scholar 

  17. Lieb, E. : Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57, 93–105 (1977)

    MathSciNet  ADS  MATH  Google Scholar 

  18. Lieb, E.: Variational principle for many-fermions systems. Phys. Rev. Lett. 46, 457–459 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  19. Lieb, E.: Variational principle for many-fermions systems Errata ibid. 47, 69 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  20. Lieb, E. : Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53, 603–641 (1981); Errata ibid. 54, 311 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  21. Lieb, E. : Density functional for Coulomb systems. Int. J. Quant. Chem. 24, 243–277 (1983)

    Article  Google Scholar 

  22. Lieb, E., Oxford, S. : An improved lower bound on the indirect Coulomb energy. Int. J. Quant. Chem. 19, 427–439 (1981)

    Article  Google Scholar 

  23. Lieb, E., Simon, B. : Thomas Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116(1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lieb, E., Thirring, W. : Gravitational collapse in quantum mechanics with relativistic kinetic energy. Ann. Phys. (NY) 155, 494–512 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  25. Lions, P.-L.: The concentration compactness principle in the calculus of variations; the locally compact case I. Ann. Inst. H. Poincaré Anal, non lineaire l, 109–145 (1984)

    Google Scholar 

  26. Messer, J. : Lecture Notes in Physics, Vol. 147. Berlin, Heidelberg, New York : Springer 1981

    Google Scholar 

  27. Morrey, C.B., Jr.: Multiple integrals in the calculus of variations, Theorem 5.8.6. Berlin, Heidelbereg, New York: Springer 1966

    MATH  Google Scholar 

  28. Ni, W.M. : Uniqueness of solutions of nonlinear Dirichlet problems. J. Differ. Equations 5, 289–304(1983)

    Article  ADS  Google Scholar 

  29. Straumann, S. : General relativity and relativistic astrophysics. Berlin, Heidelberg, New York: Springer 1984

    Book  Google Scholar 

  30. Thirring, W.: Bosonic black holes. Phys. Lett. B127, 27 (1983)

    Article  ADS  Google Scholar 

  31. Weder, R. : Spectral analysis of pseudodifferential operators. J. Funct. Anal. 20, 319–337 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  32. Weinberg, S.: Gravitation and cosmology. New York: Wiley 1972

    Google Scholar 

  33. Hamada, T., Salpeter, E. : Models for zero temperature stars. Astrophys. J. 134, 683 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  34. Shapiro, S., Teukolsky, S. : Black holes, white dwarfs and neutron stars. New York: Wiley 1983

    Book  Google Scholar 

  35. Ruffini, R., Bonazzola, S. : Systems of self-gravitating particles in general relativity and the concept of an equation of state. Phys. Rev. 187, 1767–1783 (1969)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lieb, E.H., Yau, HT. (2001). The Chandrasekhar Theory of Stellar Collapse as the Limit of Quantum Mechanics. In: Thirring, W. (eds) The Stability of Matter: From Atoms to Stars. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04360-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04360-8_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04362-2

  • Online ISBN: 978-3-662-04360-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics