Skip to main content

Stability of Coulomb Systems with Magnetic Fields

I. The One-Electron Atom

  • Chapter
The Stability of Matter: From Atoms to Stars

Abstract

The ground state energy of an atom in the presence of an external magnetic field B (with the electron spin-field interaction included) can be arbitrarily negative when B is arbitrarily large. We inquire whether stability can be restored by adding the self energy of the field, j B 2. For a hydrogenic like atom we prove that there is a critical nuclear charge, z c, such that the atom is stable for z<z c and unstable for z>z c .

Work partially supported by U.S. National Science Foundation grant DMS-8405264 during the author’s stay at the Institute for Advanced Study, Princeton, NJ, USA

Work partially supported by U.S. National Science Foundation grant PHY-8116101-A03

Work partially supported by U.S. and Swiss National Science Foundation Cooperative Science Program INT-8503858.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avron, J., Herbst, I., Simon, B.: Schrodinger operators with magnetic fields: III. Atoms in homogeneous magnetic field. Commun. Math. Phys. 79, 529–572 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Remark 3 in Brezis, H., Lieb, E.H.: Minimum action solution of some vector field equations. Commun. Math. Phys. 96, 97–113 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Daubechies, I., Lieb, E.H.: One-electron relativistic molecules with Coulomb interaction. Commun. Math. Phys. 90, 497–510 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Kato, T.: Schrodinger operators with singular potentials. Israel J. Math. 13, 135–148 (1972)

    Google Scholar 

  5. Lieb, E.H.: On the lowest eigenvalue of the Laplacian for the intersection of two domains. Invent. Math. 74, 441–448 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Lieb, E.H., Loss, M.: Stability of Coulomb systems with magnetic fields: II. The many-electron atom and the one-electron molecule. Commun. Math. Phys. 104, 271–282 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Lieb, E.H., Thirring, W.: Inequalities for the moments of the eigenvalues of the Schrodinger Hamiltonian and their relation to Sobolev inequalities. In: Studies in mathematical physics, essays in honor of Valentine Bargmann. Lieb, E.H., Simon, B., Wightman, A.S. (eds.). Princeton, NJ: Princeton University Press 1976

    Google Scholar 

  8. Loss, M., Yau, H.T.: Stability of Coulomb systems with magnetic fields: III. Zero energy bound states of the Pauli operator. Commun. Math. Phys. 104, 283–290 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Michel, F.C.: Theory of pulsar magnetospheres. Rev. Mod. Phys. 54, 1–66 (1982)

    Article  ADS  Google Scholar 

  10. Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton, NJ: Princeton University Press 1970

    MATH  Google Scholar 

  11. Straumann, N. : General relativity and relativistic astrophysics.Berlin, Heidelberg, New York, Tokyo: Springer 1984

    Book  Google Scholar 

  12. Hofîmann-Ostenhof, M., Hoffmann-Ostenhof, T.: Schrodinger inequalities and asymptotic behavior of the electron density of atoms and molecules. Phys. Rev. A 16, 1782–1785 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  13. Avron, J., Herbst, I., Simon, B.: Schrodinger operators with magnetic fields: I. General Interactions Duke. Math. J. 45, 847–883 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fröhlich, J., Lieb, E.H., Loss, M. (2001). Stability of Coulomb Systems with Magnetic Fields. In: Thirring, W. (eds) The Stability of Matter: From Atoms to Stars. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04360-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04360-8_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04362-2

  • Online ISBN: 978-3-662-04360-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics