Skip to main content

Thomas-fermi and related theories of atoms and molecules

  • Chapter
The Stability of Matter: From Atoms to Stars
  • 423 Accesses

Abstract

This article is a summary of what is know rigorously about Thomas-Fermi (TF) theory with and without the Dirac and von Weizsäcker corrections. It is also shown that TF theory agrees asymptotically, in a certain sense, with nonrelativistic quantum theory as the nuclear charge z tends to infinity. The von Weizsäcker correction is shown to correct certain undesirable features of TF theory and to yield a theory in much better agreement with what is believed (but as yet unproved) to be the structure of real atoms. Many open problems in the theory are presented.

This article appears in the Proceedings of the NATO Advanced Study Institute on Rigorous Atomic and Molecular Physics held at Erice in June, 1980, edited by G. Velo and A. S. Wightman, and published by Plenum Corporation. The present Rev. Mod. Phys. version contains corrections of some errors in the Plenum version.

An erratum to this chapter is available at http://dx.doi.org/10.1007/978-3-662-04360-8_51

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams, R. A., 1975, Sobolev Spaces (Academic, New York).

    MATH  Google Scholar 

  • Balàzs, N., 1967, “Formation of stable molecules within the statistical theory of atoms,” Phys. Rev. 156, 42–47.

    Article  ADS  Google Scholar 

  • Baumgartner, B., 1976, “The Thomas-Fermi theory as result of a strong-coupling limit,” Commun. Math. Phys. 47, 215–219.

    Article  MathSciNet  ADS  Google Scholar 

  • Baxter, J. R., 1980, “Inequalities for potentials of particle systems,” Ill. J. Math. 24, 645–652.

    MathSciNet  MATH  Google Scholar 

  • Benguria, R., 1979, “The von Weizsäcker and exchange corrections in Thomas-Fermi theory,” Ph.D. thesis, Princeton University (unpublished).

    Google Scholar 

  • Benguria, R., 1981, “Dependence of the Thomas-Fermi Energy on the Nuclear Coordinates,” Commun. Math. Phys., to appear.

    Google Scholar 

  • Benguria, R., H. Brezis, and E. H. Lieb, 1981, “The Thomas-Fermi-von Weizsäcker theory of atoms and molecules,” Commun. Math. Phys. 79, 167–180.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Benguria, R., and E. H. Lieb, 1978a, “Many-body potentials in Thomas-Fermi theory,” Ann. of Phys. (N.Y.) 110, 34–45.

    Article  MathSciNet  ADS  Google Scholar 

  • Benguria, R., and E. H. Lieb, 1978b, “The positivity of the pressure in Thomas-Fermi theory,” Commun. Math. Phys. 63, 193–218,

    Article  MathSciNet  ADS  Google Scholar 

  • Benguria, R., and E. H. Lieb, 1978b, “The positivity of the pressure in Thomas-Fermi theory,” Errata 71, 94 (1980).

    MathSciNet  Google Scholar 

  • Berestycki, H., and P. L. Lions, 1980, “Existence of stationary states in nonlinear scalar field equations,” in Bifurcation Phenomena in Mathematical Physics and Related Topics, edited by C. Bardos and D. Bessis (Reidel, Dordrecht), 269–292.

    Chapter  Google Scholar 

  • See also “Nonlinear Scalar field equations, Parts I and II,” Arch. Rat. Mech. Anal., 1981, to appear.

    Google Scholar 

  • Brezis, H., 1978, “Nonlinear problems related to the Thomas-Fermi equation,” in Contemporary Developments in Continuum Mechanics and Partial Differential Equations, edited by G. M. de la Pehha, and L. A. Medeiros (North-Holland, Amsterdam), 81–89.

    Google Scholar 

  • Brezis, H., 1980, “Some variational problems of the Thomas-Fermi type,” in Variational Inequalities and Complementarity Problems: Theory and Applications, edited by R. W. Cottle, F. Giannessi, and J-L. Lions (Wiley, New York), 53–73.

    Google Scholar 

  • Brezis, H., and E. H. Lieb, 1979, “Long range atomic potentials in Thomas-Fermi theory,” Commun. Math. Phys. 65, 231–246.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Brezis, H., and L. Veron, 1980, “Removable singularities of nonlinear elliptic equations,” Arch. Rat. Mech. Anal. 75, 1–6.

    MathSciNet  MATH  Google Scholar 

  • Caffarelli, L. A., and A. Friedman, 1979, “The free boundary in the Thomas-Fermi atomic model,” J. Diff. Equ. 32, 335–356.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Deift, P., W. Hunziker, B. Simon, and E. Vock, 1978, “Point-wise bounds on eigenfunctions and wave packets in N-body quantum systems IV,” Commun. Math. Phys. 64, 1–34.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Dirac, P. A. M., 1930, “Note on exchange phenomena in the Thomas-Fermi atom,” Proc. Cambridge Philos. Soc. 26, 376–385.

    Article  ADS  MATH  Google Scholar 

  • Fermi, E., 1927. “Un metodo statistico per la determinazione di alcune priorieta dell’atome,” Rend. Accad. Naz. Lincei 6, 602–607.

    Google Scholar 

  • Firsov, O. B., 1957, “Calculation of the interaction potential of atoms for small nuclear separations,” Zh. Eksper. i Teor. Fiz. 32, 1464.

    Google Scholar 

  • Firsov, O. B., 1957, “Calculation of the interaction potential of atoms for small nuclear separations,”[English transl. Sov. Phys.—JETP 5, 1192–1196 (1957)].

    MATH  Google Scholar 

  • Firsov, O. B., 1957, “Calculation of the interaction potential of atoms for small nuclear separations,” See also Zh. Eksp. Teor. Fiz. 33, 696 (1957);

    Google Scholar 

  • Firsov, O. B., 1957, “Calculation of the interaction potential of atoms for small nuclear separations,” See also Zh. Eksp. Teor. Fiz. 34, 447 (1958)

    Google Scholar 

  • Firsov, O. B., 1957, “Calculation of the interaction potential of atoms for small nuclear separations,” [Sov. Phys.—JETP 6, 534–537 (1958);

    ADS  MATH  Google Scholar 

  • Firsov, O. B., 1957, “Calculation of the interaction potential of atoms for small nuclear separations,” See also Zh. Eksp. Teor. Fiz. 7, 308–311 (1958)].

    Google Scholar 

  • Fock, V., 1932, “Uber die Gültigkeit des Virialsatzes in der Fermi—Thomas’sehen Theorie,” Phys. Z. Sowjetunion 1, 747–755.

    Google Scholar 

  • Gilbarg, D., and N. Trudinger, 1977, Elliptic Partial Differential Equations of Second Order (Springer Verlag, Heidel-‘berg).

    Book  MATH  Google Scholar 

  • Gombas, P., 1949, Die statistischen Theorie des Atomes und ihre Anwendungen (Springer Verlag, Berlin).

    Book  Google Scholar 

  • Hille, E., 1969, “On the Thomas-Fermi equation,” Proc. Nat. Acad. Sci. (USA) 62, 7–10.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hoffmann-Osténhof, M., T. Hoffmann-Ostenhof, R. Ahlrichs, and J. Morgan, 1980, “On the exponential falloff of wave functions and electron densities,” Mathematical Problems in Theoretical Physics, Proceedings of the International Conference on Mathematical Physics held in Lausanne, Switzerland, August 20–25, 1979, Springer Lectures Notes in Physics, edited by K. Osterwalder (Springer-Verlag, Berlin, Heidelberg, New York, 1980), Vol. 116, 62–67.

    Google Scholar 

  • Hoffmann-Ostenhof, T., 1980, “A comparison theorem for differential inequalities with applications in quantum mechanics,” J. Phys. A 13, 417–424.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Jensen, H., 1933, “Über die Gültigkeit des Virialsatzes in der Thomas-Fermischen Theorie,” Z. Phys. 81, 611–624.

    Article  ADS  Google Scholar 

  • Kato, T., 1957, “On the eigenfunctions of many-particle systems in quantum mechanics,” Commun. Pure Appl. Math. 10, 151–171.

    Article  MATH  Google Scholar 

  • Lee, C. E., C. L. Longmire, and M. N. Rosenbluth, 1974, “Thomas-Fermi calculation of potential between atoms,” Los Alamos Scientific Laboratory Report No. LA-5694-MS.

    Book  Google Scholar 

  • Liberman, D. A., and E. H. Lieb, 1981, “Numerical calculation of the Thomas-Fermi—von Weizsäcker function for an infinite atom without electron repulsion,” Los Alamos National Laboratory Report in preparation.

    Google Scholar 

  • Lieb, E. H., 1974, “Thomas-Fermi and Hartree-Fock theory,” in Proceedings of the International Congress of Mathematicians, Vancouver, Vol. 2, 383–386.

    Google Scholar 

  • Lieb, E. H., 1976, “The stability of matter,” Rev. Mod. Phys. 48, 553–569.

    Article  MathSciNet  ADS  Google Scholar 

  • Lieb, E.H., 1977, “Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation,” Stud, in Appl. Math. 57, 93–105.

    MathSciNet  ADS  MATH  Google Scholar 

  • Lieb, E. H., 1979, “A lower bound for Coulomb energies,” Phys. Lett. A 70, 444–446.

    Article  MathSciNet  ADS  Google Scholar 

  • Lieb, E. H., 1981a, “A variational principle for many-fermion systems,” Phys. Rev. Lett. 46, 457–459;

    Article  MathSciNet  ADS  Google Scholar 

  • Lieb, E. H., 1981a, “A variational principle for many-fermion systems,” Erratum 47, 69 (1981).

    Google Scholar 

  • Lieb, E. H., 1981b, “Analysis of the Thomas-Fermi-von Weizsäcker equation for an atom without electron repulsion,” in preparation.

    Google Scholar 

  • Lieb, E. H., and S. Oxford, 1981, “An improved lower bound on the indirect Coulomb energy,” Int. J. Quantum Chem. 19, 427–439.

    Article  Google Scholar 

  • Lieb, E. H., and B. Simon, 1977, “The Thomas-Fermi theory of atoms, molecules and solids,” Adv. in Math. 23, 22–116.

    Article  MathSciNet  MATH  Google Scholar 

  • Lieb, E. H., and B. Simon, 1977, These results were first announced in “Thomas-Fermi theory revisited,” Phys. Rev. Lett. 31, 681–683 (1973). An outline of the proofs was given in Lieb, 1974.

    Article  ADS  Google Scholar 

  • Lieb, E. H., and B. Simon, 1978, “Monotonicity of the electronic contribution to the Born-Oppenheimer energy,” J. Phys. B 11, L537–542.

    Article  MathSciNet  ADS  Google Scholar 

  • Lieb, E.H., and W. Thirring, 1975, “Bound for the kinetic energy of fermions which proves the stability of matter,” Phys. Rev. Lett. 35, 687–689;

    Article  ADS  Google Scholar 

  • Lieb, E.H., and W. Thirring, 1975, “Bound for the kinetic energy of fermions which proves the stability of matter,” Errata 35, 1116 (1975).

    Google Scholar 

  • Lieb, E. H., and W. Thirring, 1976, “A bound for the moments of the eigenvalues of the Schroedinger Hamiltonian and their relation to Sobolev inequalities,” in Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann, edited by E. H. Lieb, B. Simon, and A. S. Wightman (Princeton University Press, Princeton), 269–303.

    Google Scholar 

  • March, N. H., 1957, “The Thomas-Fermi approximation in quantum mechanics,” Adv. in Phys. 6, 1–98.

    Article  ADS  Google Scholar 

  • Mazur, S., 1933, “Uber konvexe Mengen in linearen normierten Räumen,” Studia Math. 4, 70–84. See p. 81.

    Google Scholar 

  • Morgan, J., III., 1978, “The asymptotic behavior of bound eigenfunctions of Hamiltonians of single variable systems,” J. Math. Phys. 19, 1658–1661.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Morrey, C. B., Jr., 1966, Multiple integrals in the calculus of variations (Springer, New York).

    MATH  Google Scholar 

  • O’Connor, A. J., 1973, “Exponential decay of bound state wave functions,” Commun. Math. Phys. 32, 319–340.

    Article  MathSciNet  ADS  Google Scholar 

  • Reed, M., and B. Simon, 1978, Methods of Modern Mathematical Physics (Academic, New York), Vol. 4.

    MATH  Google Scholar 

  • Ruskai, M. B., 1981, “Absence of discrete spectrum in highly negative ions,” Commun. Math. Phys. (to appear).

    Google Scholar 

  • Scott, J. M. C., 1952, “The binding energy of the Thomas-Fermi atom,” Philos. Mag. 43, 859–867.

    Google Scholar 

  • Sheldon, J. W., 1955, “Use of the statistical field assumption in molecular physics,” Phys. Rev. 99, 1291–1301.

    Article  ADS  MATH  Google Scholar 

  • Simon, B., 1981, “Large time behavior of the L pnorm of Schroedinger semigroups,” J. Func. Anal. 40, 66–83.

    Article  MATH  Google Scholar 

  • Stampacchia, G., 1965, Equations elliptiques du second ordre a coefficients discontinus (Presses de l’Universite, Montreal).

    Google Scholar 

  • Teller, E., 1962, “On the stability of molecules in the Thomas-Fermi theory,” Rev. Mod. Phys. 34, 627–631.

    Article  ADS  MATH  Google Scholar 

  • Thirring, W., 1981, “A lower bound with the best possible constant for Coulomb Hamiltonians,” Commun. Math. Phys. 79, 1–7 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  • Thomas, L. H., 1927, “The calculation of atomic fields,” Proc. Camb. Philos. Soc. 23, 542–548.

    Article  ADS  MATH  Google Scholar 

  • Torrens, I. M., 1972, Interatomic Potentials (Academic, New York).

    Google Scholar 

  • Veron, L., 1979, “Solutions singulières d’equations elliptiques semilinêaire,” C. R. Acad. Sci. Paris 288, 867–869. This is an announcement; details will appear in “Singular solutions of nonlinear elliptic equations,” J. Non-Lin. Anal., in press.

    MathSciNet  MATH  Google Scholar 

  • von Weizsäcker, C. F., 1935, “Zur Theorie der Kernmassen,” Z. Phys. 96, 431–458.

    Article  ADS  MATH  Google Scholar 

  • Yonei, K., and Y. Tomishima, 1965, “On the Weizsäcker correction to the Thomas-Fermi theory of the atom,” Jour. Phys. Soc. Japan 20, 1051–1057.

    Article  ADS  Google Scholar 

  • Yonei, K., 1971, “An extended Thomas-Fermi-Dirac theory for diatomic molecules,” Jour. Phys. Soc. Japan 31, 882–894.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lieb, E.H. (2001). Thomas-fermi and related theories of atoms and molecules. In: Thirring, W. (eds) The Stability of Matter: From Atoms to Stars. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04360-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04360-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04362-2

  • Online ISBN: 978-3-662-04360-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics