Skip to main content

Asymptotics of Natural and Artificial Atoms in Strong Magnetic Fields

  • Chapter
The Stability of Matter: From Atoms to Stars

Abstract

Magnetic fields in terrestrial experiments have only tiny effects on the ground-state properties of conventional atoms. The reason is that the natural atomic unit for magnetic field strength, B 0= m 2 e 3 c3 = 2.35 × 105 Tesla, is enormous compared with laboratory fields, which are seldom larger than 10 T. Here m denotes the electron mass, e the elementary charge, and ħ and c have their usual meaning. The unit B 0 is the field strength B at which the magnetic length B = (ħc/(eB))1/2 (~ cyclotron radius for an electron in the lowest Landau level) is equal to the Bohr radius a0 = ħ 2 /(me 2). Equivalently, at B = B 0 the Landau energy ħω B , with ω B = eB/(mc) the cyclotron frequency, becomes equal to the Rydberg energy e 2 /a 0. For BB 0 distortions of ground-state wave functions and energy level shifts due to the magnetic field will therefore be small, and their standard treatment by means of perturbation theory is completely adequate.

This is the text of a lecture given by J. Yngvason at the XIth International Congress of Mathematical Physics, Paris 1994. It appeared originally in the proceedings of the congress, ed. by D. Iagolnitzer, pp. 185–205, International Press 1995, but has been updated and slightly expanded for the present publication. It summarizes the joint work [2], [3] and [5] of the three authors and is presented here in lieu of [2] and [3] which are too long to be included in this volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. Chanmugam, Magnetic Fields of Degenerate Stars, Ann. Rev. Astron. Astrophys. 30, 143–184 (1992)

    Article  ADS  Google Scholar 

  2. E.H. Lieb, J.P. Solovej and J. Yngvason, Asymptotics of Heavy Atoms in High Magnetic Fields: I. Lowest Landau Band Regions, Commun. Pure Appl. Math. 47, 513–591 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. E.H. Lieb, J.P. Solovej and J. Yngvason, Asymptotics of Heavy Atoms in High Magnetic Fields: II. Semiclassical Regions, Commun. Math. Phys 161, 77–124 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. M.A. Kastner, Artificial atoms, Phys. Today 46, 24–31 (1993)

    Article  ADS  Google Scholar 

  5. E.H. Lieb, J.P. Solovej and J. Yngvason, The Ground States of Large Quantum Dots in Magnetic Fields, Phys. Rev. B 51, 10646–10665 (1995)

    Article  ADS  Google Scholar 

  6. E.H. Lieb, J.P. Solovej and J. Yngvason, Heavy Atoms in the Strong Magnetic Field of a Neutron Star, Phys. Rev. Lett. 69, 749–752 (1992)

    Article  ADS  Google Scholar 

  7. E.H. Lieb and J.P. Solovej, Atoms in the Magnetic Field of a Neutron Star, in: Differential Equations with Applications to Mathematical Physics, W.F. Ames, J.V. Herod and E.M. Harrell II, eds., pp. 221–237, Academic Press 1993

    Chapter  Google Scholar 

  8. E.H. Lieb, J.P. Solovej and J. Yngvason, Quantum Dots, in: Proceedings of the Conference on Partial Differential Equations and Mathematical Physics, University of Alabama, Birmingham, 1994, I. Knowles, ed., pp. 157–172, International Press 1995

    Google Scholar 

  9. E.H. Lieb and B. Simon, The Thomas-Fermi Theory of Atoms, Molecules and Solids, Adv. in Math. 23, 22–116 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  10. E.H. Lieb, Thomas-Fermi and related theories of atoms and molecules, Rev. Mod. Phys. 53, 603–641 (1981);

    Article  MathSciNet  ADS  Google Scholar 

  11. E.H. Lieb, Erratum, Rev. Mod. Phys. 54, 311 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  12. B.B. Kadomtsev, Heavy Atoms in an Ultrastrong Magnetic Field, Soviet Phys. JETP 31, 945–947 (1970)

    ADS  Google Scholar 

  13. B.B. Kadomtsev and V.S. Kudryavtsev, Atoms in a superstrong magnetic field, JETP Lett. 13, 42–44 (1971)

    ADS  Google Scholar 

  14. M. Ruderman, Matter in Superstrong Magnetic Fields: The Surface of a Neutron Star, Phys. Rev. Lett. 27, 1306–1308 (1971).

    Article  ADS  Google Scholar 

  15. R.O. Mueller, A.R.P. Rau and L. Spruch, Statistical Model of Atoms in Intense Magnetic Fields, Phys. Rev. Lett. 26, 1136–1139 (1971)

    Article  ADS  Google Scholar 

  16. Y. Tomishima and K. Yonei, Thomas-Fermi Theory for Atoms in a Strong Magnetic Field, Progr. Theor. Phys. 59, 683–696 (1978)

    Article  ADS  Google Scholar 

  17. B. Banerjee, D.H. Constantinescu, and P. Rehák, Thomas-Fermi and Thomas-Fermi-Dirac calculations for atoms in a very strong magnetic field, Phys. Rev. D 10, 2384–2395 (1974)

    Article  ADS  Google Scholar 

  18. J. Yngvason, Thomas-Fermi Theory for Matter in a Magnetic Field as a Limit of Quantum Mechanics, Lett. Math. Phys. 22, 107–117 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. V. Ivrii, Semiclassical Microlocal Analysis and Spectral Asymptotics, Springer (to be published)

    Google Scholar 

  20. A. Sobolev, The quasi-classical asymptotics of local Riesz means for the Schrödinger operator in a strong homogeneous magnetic field, Duke Math. J. 74, 319–429 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. I. Fushiki, E.H. Gudmundsson, C.J. Pethick, and J. Yngvason, Matter in a Magnetic Field in the Thomas-Fermi and Related Theories, Ann. Phys. 216, 29–72 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  22. O.E. Rögnvaldsson, I. Fushiki, C.J. Pethick, E.H. Gudmundsson and J. Yngvason, Thomas-Fermi Calculations of Atoms and Matter in Magnetic Neutron Stars: Effects of Higher Landau Bands, Astrophys. J. 216, 276–290 (1993)

    Article  Google Scholar 

  23. K. Johnsen, MS thesis, Univ. of Iceland, 1994. See also: K. Johnsen and J. Yngvason, Density Matrix Functional Calculations for Matter in Strong Magnetic Fields: Ground States of Heavy Atoms, Phys. Rev. A, in press (1996)

    Google Scholar 

  24. E.H. Lieb, A Variational Principle for Many-Fermion Systems, Phys. Rev. Lett. 46, 457–459;

    Google Scholar 

  25. E.H. Lieb, A Variational Principle for Many-Fermion Systems, Erratum 47, 69 (1981)

    MathSciNet  Google Scholar 

  26. E.H. Lieb, J.P. Solovej, Quantum coherent operators: A generalization of coherent states, Lett. Math. Phys. 22, 145–154 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. E.H. Lieb and W.E. Thirring, Bound for the Kinetic Energy of Fermions Which Proves the Stability of Matter, Phys. Rev. Lett. 35, 687–689 (1975)

    Article  ADS  Google Scholar 

  28. L. Erdos, Magnetic Lieb-Thirring inequalities, Comm. Math. Phys. 170, 629–669 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  29. E.H. Lieb and S. Oxford, An Improved Lower Bound on the Indirect Coulomb Energy, Int. J. Quant. Chem. 19, 427–439 (1981)

    Article  Google Scholar 

  30. P.L. McEuen, E.B. Foxman, J. Kinaret, U. Meirav, M.A. Kastner, N.S. Wingreen and S.J. Wind, Self consistent addition spectrum of a Coulomb island in the quantum Hall regime, Phys. Rev. B 45, 11419–11422 (1992)

    Article  ADS  Google Scholar 

  31. N.C. van der Vaart, M.P. de Ruyter van Steveninck, L.P. Kouwenhoven, A.T. Johnson, Y.V. Nazarov, and C.J.P.M. Harmans, Time-Resolved Tunneling of Single Electrons between Landau Levels in a Quantum Dot, Phys. Rev. Lett. 73, 320–323 (1994)

    Article  ADS  Google Scholar 

  32. E.H. Lieb and H.-T. Yau, The stability and instability of relativistic matter, Commun. Math. Phys. 118, 177–213 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lieb, E.H., Solovej, J.P., Yngvason, J. (2001). Asymptotics of Natural and Artificial Atoms in Strong Magnetic Fields. In: Thirring, W. (eds) The Stability of Matter: From Atoms to Stars. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04360-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04360-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04362-2

  • Online ISBN: 978-3-662-04360-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics