Skip to main content

Mitochondria in the Cold

  • Conference paper
Life in the Cold

Abstract

Development of hibernation strategies for cold preservation of human organs represents a far-reaching goal in transplantation surgery. Short cold storage times of <6 h tolerated by the human heart remain a major clinical problem. Mitochondrial cold storagereperfusion injury is becoming recognized as a limiting factor in preservation of organs from non-hibernating mammals. Damaged mitochondria lead to cellular injury by reduction of ATP supply, oxidative stress, disturbance of ion balance, cytochrome c release and induction of apoptosis and necrosis. Profiles of mitochondrial injuries differed after (1) cold preservation of isolated rat heart mitochondria, (2) cold preservation of the rat heart, and (3) after transplantation and rewarming/reperfusion. Importantly, a specific defect of complex I of the electron transport chain, uncoupling of oxidative phosphorylation and the pronounced release of cytochromec from mitochondria were absent after cold storage but developed during reperfusion, in proportion to the loss of heart function. Cold preservation of isolated heart mitochondria could be significantly prolonged by a mitochondrial preservation solution containing antioxidants, mitochondrial substrates, ATP, histidine, and oncotic agents. Successful cold storage of heart mitochondria demonstrates a large scope for improvement of heart preservation solutions. In this context, comparison of intracellular conditions and cold ischemia-reperfusion injury in hibernating and non-hibernating mammals may provide a rationale for improvement of clinical organ hibernation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bolling SF, Su T-P, Childs KF, Ning X-H, Horton N, Kilgore K, Oeltgen PR (1997) The use of hibernation induction triggers for cardiac transplant preservation. Transplantation 63: 326–329

    Article  PubMed  CAS  Google Scholar 

  • Brustovetsky NN, Amerkhanov ZG, Popova Eyu, Konstantinov AA (1990) Reversible inhibition of electron transfer in the ubiquinol cytochrome c reductase segment of the mitochondrial respiratory chain in hibernating ground squirrels. FEBS Lett 263: 73–76

    Article  PubMed  CAS  Google Scholar 

  • Brustovetsky NN, Egorova MV, Gnutov Dyu, Mokhova EN, Skulachev VP (1993) Cyclosporin A suppression of uncoupling in liver mitochondria of ground squirrel during arousal from hibernation. FEBS Lett 315: 233–236

    Article  PubMed  CAS  Google Scholar 

  • Di Lisa F, Menabò R, Canton M, Petronilli V (1995) The role of mitochondria in the salvage and the injury of the ischemic myocardium. Biochim Biophys Acta 1366: 69–78

    Google Scholar 

  • Fedotcheva NJ, Sharyshev AA, Mironova GD, Kondrashova MN (1985) Inhibition of succinate oxidation and K+ transport in mitochondria during hibernation. Comp Biochem Physiol B 82: 191–195

    PubMed  CAS  Google Scholar 

  • Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Darbenzio RB, D’Alonzo AJ, Lodge NJ, Smith MA, Grover GJ (1997) Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive KC channels. Possible mechanism of cardioprotection. Circ Res 81: 1072–1082

    Article  PubMed  CAS  Google Scholar 

  • Ghafourifar P, Klein SD, Schucht O, Schenk U, Pruschy M, Rocha S, Richter C (1999) Ceramide induces cytochrome c release from isolated mitochondria. Importance of mitochondrial redox state. J Biol Chem 274: 6080–6084

    Article  PubMed  CAS  Google Scholar 

  • Gnaiger E, Lassnig B, Kuznetsov AV, Rieger G, Margreiter R (1998) Mitochondrial oxygen affinity, respiratory flux control and excess capacity of cytochrome c oxidase. J exp Biol 201: 1129–1139

    PubMed  CAS  Google Scholar 

  • Gnaiger E, Rieger G, Stadlmann S, Amberger A, Eberl T, Margreiter R (1999) Mitochondrial defect in endothelial cold ischemia/reperfusion injury. Transplant Proc 31: 994–995

    Article  PubMed  CAS  Google Scholar 

  • Gnaiger E, Steinlechner-Maran R, Méndez G, Eberl T, Margreiter R (1995) Control of mitochondrial and cellular respiration by oxygen. J Bioenerg Biomembr 27: 583–596

    Article  PubMed  CAS  Google Scholar 

  • Heldmaier G, Klingenspor M, Werneyer M, Lampi BJ, Brooks SP, Storey B (1999) Metabolic adjustments during daily torpor in the Djungarian hamster. Am J Physiol 276: E896-E906

    PubMed  CAS  Google Scholar 

  • Heldrnaier G, Ruf T(1992) Body temperature and metabolic rate during natural hypothermia in endotherms. J Comp Physiol B 162: 696–706

    Article  Google Scholar 

  • Hochachka PW, Guppy M(1987) Metabolic arrest and the control of biological time. Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Kay L, Daneshrad Z, Saks VA, Rossi A (1997) Alteration in the control of mitochondrial respiration by outer mitochondrial membrane and creatine during heart preservation. Cardiovasc Res 34: 547–556

    Article  PubMed  CAS  Google Scholar 

  • Ku K, Oku H, Alam MS, Saitoh Y, Nosaka S, Nakayama K (1997) Prolonged hypothermic cardiac storage with histidine-tryptophan-ketoglutarate solution. Transplantation 64: 971–975

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsov AV, Brandacher G, Steurer W, Margreiter R, Gnaiger E (1999) Estimation of mitochondrial damage in heart preservation. Transplant Proc 31: 992

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsov AV, Brandacher G, Steurer W, Margreiter R, Gnaiger E (2000) Isolated rat heart mitochondria and whole rat heart as models for mitochondrial cold ischemia-reperfusion injury. Transplant Proc 32 (in press)

    Google Scholar 

  • Lemasters JJ, Bond JM, Currin RT, Nieminen A-L, Caldwell-Kenkel JC, Harrison DC, Kaplan SH, Cascio WE, Thurman RG, Gores GJ, Herman B (1993) Reperfusion injury to heart and liver cells: Protection by acidosis during ischemia and a “pH paradox” after reperfusion. In: Hochachka PW, Lutz PL, Sick T, Rosenthal M, Van den Thillart G (eds.) Surviving hypoxia: Mechanisms of control and adaptation. CRC Press, Boca Raton Ann Arbor London Tokyo, pp 495–507

    Google Scholar 

  • Martin SL, Maniero GD, Carey C, Hand SC (1999) Reversible depression of oxygen consumption in isolated liver mitochondria during hibernation. Physiol Biochem Zool 72: 255–264

    Article  PubMed  CAS  Google Scholar 

  • Menasché P, Pradier F, Grousset C, Peynet J, Mouas C, Bloch G, Piwnica A (1993) Improved recovery of heart transplants with a specific kit of preservation solutions. J Thorac Cardiovasc Surg 105: 353–363

    PubMed  Google Scholar 

  • Opie LH (1997) The heart. Physiology, from cell to circulation. Lippincott-Raven, Philadelphia New York

    Google Scholar 

  • Parce JW, Spach PI, Cunningham CC (1980) Deterioration of rat liver mitochondria under conditions of metabolite deprivation. Biochem J 188: 817–822

    PubMed  CAS  Google Scholar 

  • Saks VA, Veksler VI, Kuznetsov AV, Kay L, Sikk P, Tiivel T, Tranqui L, Olivares J, Winkler K, Wiedemann F, Kunz WS (1998) Permeabilized cell and skinned fiber techniques in studies of mitochondrial function in vivo. Mol Cell Biochem 184: 81–100

    Article  PubMed  CAS  Google Scholar 

  • Scholte HR, Yu Y, Ross JD, Oosterkamp II, Boonman AM, Busch HF (1997) Rapid isolation of muscle and heart mitochondria, the lability of oxidative phosphorylation and attempts to stabilize the process in vitro by taurine, carnitine and other compounds. Mol Cell Biochem 174: 61–66

    Article  PubMed  CAS  Google Scholar 

  • Southard JH, Belzer FO (1995) Organ preservation. Annu Rev Med 46: 235–247

    Article  PubMed  CAS  Google Scholar 

  • Steinlechner-Maran R, Eberl T, Kunc M, Schröcksnadel H, Margreiter R, Gnaiger E (1997) Respiratory defect as an early event in preservation/reoxygenation injury in endothelial cells. Transplantation 63: 136–142

    Article  PubMed  CAS  Google Scholar 

  • Storey KB (1997) Metabolic regulation in mammalian hibernation: enzyme and protein adaptations. Comp Biochem Physiol A 118: 1115–1124

    Article  CAS  Google Scholar 

  • Sumeray MS, Yellon DM (1999) Ischemic preconditioning. In: Grace PA, Mathie RT (eds) Ischemia-reperfusion injury.Blackwell Science, Oxford, pp 328–343

    Google Scholar 

  • Tseng EE, Cameron DE (1999) Myocardial protection from ischemia-reperfusion injury in cardiac surgery. In: Grace PA, Mathie RT (eds) Ischemia-reperfusion injury.Blackwell Science, Oxford, pp 344–356

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gnaiger, E. et al. (2000). Mitochondria in the Cold. In: Heldmaier, G., Klingenspor, M. (eds) Life in the Cold. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04162-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04162-8_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08682-3

  • Online ISBN: 978-3-662-04162-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics