Skip to main content

Gene Expression and Protein Adaptations in Mammalian Hibernation

  • Conference paper
Life in the Cold

Abstract

An understanding of the protein adaptations that support mammalian hibernation is coming from several different approaches. New studies in my lab are (a) using cDNA library screening to identify genes that are up-regulated in hibernation, (b) analyzing the role of reversible protein phosphorylation in the control of membrane ion pumps in torpor, (c) assessing temperature-dependent properties of protein kinases that alter their function in euthermic vs hibernating states, and (d) characterizing fatty acid binding proteins of hibernating vs nonhibernating species to identify properties that support intracellular fatty acid transport at low body temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews MT, Squire TL, Bowen CM, Rollins MB (1998) Low-temperature carbon utilization is regulated by novel gene activity in the heart of a hibernating mammal. Proc Natl Acad Sci. USA 95: 8392–8397

    Article  PubMed  CAS  Google Scholar 

  • Banaszak L, Winter N, Xu Z, Bernlohr DS, Cowan W, Jones TA (1994) Lipid binding proteins. A family of fatty acid and retinoid transport proteins. Adv Protein Chem 45: 89–151

    Article  PubMed  CAS  Google Scholar 

  • Barton PJ, Cohen A, Robert IB, Fiszman MY, Bonhomme F, Guenet JL, Leader DP, Buckingham ME (1985) The myosin alkali light chains of the mouse ventricular and slow skeletal muscle are indistinguishable and are encoded by the same gene. J Biol Chem 260: 8758–8584

    Google Scholar 

  • Boyer BB, Barnes BM, Lowell BB, Grujic D (1998) Differential regulation of uncoupling protein gene homologues in multiple tissues of hibernating ground squirrels. Am J Physiol 275: R1232-R1238

    Google Scholar 

  • Brooks SPJ, Storey KB (1992) Mechanisms of glycolytic control during hibernation in the ground squirrel Spermophilus lateralis. J Comp Physiol 162: 23–28

    CAS  Google Scholar 

  • Cai Q, Storey KB (1996) Anoxia-induced gene expression in turtle heart: up-regulation of mitochondrial genes for NADH-ubiquinone oxidoreductase subunit 5 and cytochrome C oxidase subunit 1. Eur J Biochem 241: 83–92

    Article  PubMed  CAS  Google Scholar 

  • Carey HV, Martin SL (1996) Preservation of intestinal expression during hibernation. Am J Physiol 271: G804-G813

    Google Scholar 

  • Clausen T (1986) Regulation of active Na+K+ transport in muscle. Physiol Rev 66: 542–576

    PubMed  CAS  Google Scholar 

  • Dicker A, Cannon B, Nedergaard J (1996) Stimulation of non-shivering thermogenesis in the Syrian hamster by norepinephrine & ß-adrenergic agents. Comp Biochem Physiol C 113: 37–43

    PubMed  CAS  Google Scholar 

  • Fahlman A, Storey JM, Storey KB 2000. Gene up-regulation in heart during mammalian hibernation. Cryobiology in press

    Google Scholar 

  • Frank CL, Storey KB (1995) The optimal depot fat composition for hibernation by goldenmantled ground squirrels (Spermophilus lateralis). J Comp Physiol B 164: 536–542

    Article  PubMed  CAS  Google Scholar 

  • Frerichs KU, Smith CB, Brenner M, DeGracia DJ, Krause GS, Marrone L, Dever TE, Hallenbeck JM (1998) Suppression of protein synthesis in brain during hibernation involves inhibition of protein initiation and elongation. Proc Natl Acad Sci USA 95: 14511–14516

    Article  PubMed  CAS  Google Scholar 

  • Gorham DA, Bretscher A, Carey HV (1998) Hibernation induces expression of moesin in intestinal epithelia cells. Cryobiology 37: 146–154

    Article  PubMed  CAS  Google Scholar 

  • Holden CP, Storey KB (1998) Protein kinase A catalytic subunit from bat skeletal muscle: a kinetic study of the enzyme from a hibernating mammal. Arch Biochem Biophys 358: 243–250

    Article  PubMed  CAS  Google Scholar 

  • Immaculada M, Octavi V, Mampel T, Iglesias R, Villarroya F (1993) Effects of cold environment on mitochondrial genome expression in the rat: evidence for a tissue-specific increase in the liver, independent of changes in mitochondrial abundance. Biochem J 296, 231–234

    Google Scholar 

  • Kikkawa U, Kishimoto A, Nishizuka Y (1989) The protein kinase C family: heterogeneity and its implications. Annu Rev Biochem 58: 31–44

    Article  PubMed  CAS  Google Scholar 

  • MacDonald JA, Storey KB (1998) cAMP-dependent protein kinase from brown adipose tissue: temperature effects on kinetic properties and enzyme role in hibernating ground squirrels. J Comp Physiol B 168: 513–525

    Article  PubMed  CAS  Google Scholar 

  • MacDonald JA, Storey KB (1999) Regulation of ground squirrel Na+ K+-ATPase activity by reversible phosphorylation during hibernation. Biochem Biophys Res Commun 254: 424–429

    Article  PubMed  CAS  Google Scholar 

  • Mehrani H, Storey KB (1997) Protein kinase C from bat brain: the enzyme from a hibernating mammal. Neurochem Int 31: 139–150

    Article  PubMed  CAS  Google Scholar 

  • Morano I, Adler K, Agostini B, Hasselbach W (1992) Expression of myosin heavy and light chains and phosphorylation of the phosphorylatable myosin light chain in the heart ventricle of the European hamster during hibernation and in summer. J Muscle Res Cell Motil 13: 64–70

    Article  PubMed  CAS  Google Scholar 

  • O’Hara BF, Watson FL, Srere HK, Kumar H, Wiler SW, Welch SK, Bitting L, Heller HC, Kilduff TS (1999) Gene expression in the brain across the hibernation cycle. J Neurosci 19: 3781–3790

    PubMed  Google Scholar 

  • Pehowich DJ (1994) Modification of skeletal muscle sarcoplasmic reticulum fatty acyl composition during arousal from hibernation. Comp Biochem Physiol B 109: 571–578

    Google Scholar 

  • Richieri GV, Ogata RT, Kleinfeld AM (1995) Thermodynamics of fatty acid binding to fatty acid-binding proteins and fatty acid partition between water and membranes measured using the fluorescent probe ADIFAB. J Biol Chem 270: 15076–15084

    Article  PubMed  CAS  Google Scholar 

  • Srere HK, Wang LCH, Martin SL (1992) Central role for differential gene expression in mammalian hibernation. Proc Natl Acad Sci USA 89: 7119–7123

    Article  PubMed  CAS  Google Scholar 

  • Stewart JM, English TE, Storey KB (1998) Comparisons of the effects of temperature on the liver fatty acid binding proteins from hibernator and nonhibernator mammals. Biochem Cell Biol 76: 593–599

    Article  PubMed  CAS  Google Scholar 

  • Storey KB (1997) Metabolic regulation in mammalian hibernation: enzyme and protein adaptations. Comp Biochem Physiol A 118: 1115–1124

    Article  CAS  Google Scholar 

  • Storey KB, Storey JM (1990) Facultative metabolic rate depression: molecular regulation and biochemical adaptation in anaerobiosis, hibernation and estivation. Quart Rev Biol 65: 145–174

    Article  PubMed  CAS  Google Scholar 

  • Wada M, Pette D (1993) Relationships between alkali light-chain complement and myosin heavy-chain isoforms in single fast-twitch fibers of rat and rabbit. Eur J Biochem 214: 157–161

    Article  PubMed  CAS  Google Scholar 

  • Wang LCH (1989) Ecological, physiological and biochemical aspects of torpor in mammals and birds. In: Wang LCH (ed) Advances in comparative and environmental physiology, vol 4. Springer, Heidelberg, pp 361–401

    Google Scholar 

  • Wang LCH, Lee TF (1996) Torpor and hibernation in mammals: metabolic, physiological, and biochemical adaptations. In: Fregley MJ, Blatteis CM, (eds) Handbook of physiology: environmental physiology, section 4, vol 1. Oxford University Press, New York, pp. 507–532

    Google Scholar 

  • Wickler SJ, Hoyt DF, van Breukelen F (1991) Disuse atrophy in the hibernating golden-mantled ground squirrel, Spermophilus lateralis. Am J Physiol 261: R1214–R1217

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Storey, K.B., Storey, J.M. (2000). Gene Expression and Protein Adaptations in Mammalian Hibernation. In: Heldmaier, G., Klingenspor, M. (eds) Life in the Cold. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04162-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04162-8_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08682-3

  • Online ISBN: 978-3-662-04162-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics