Skip to main content

One-Dimensional Theory of the FEL Oscillator

  • Chapter
The Physics of Free Electron Lasers

Part of the book series: Advanced Texts in Physics ((ADTP))

  • 732 Accesses

Abstract

The FEL oscillator consists of a resonator with an active medium — an electron beam in an undulator. A schematic illustration of the FEL oscillator is presented in Fig. 1.1. The problem of the interaction between the radiation and the active medium in the resonator refers to a class of self-consistent problems. To describe the FEL oscillator, the equations for the particle motion and Maxwell’s equations should be solved simultaneously taking into account the initial and boundary conditions for the electron beam and for the radiation. When analyzing the lasing process in the FEL oscillator, one should take into account that it starts from the shot noise in the electron beam. During the lasing process many longitudinal modes with different frequencies can be excited in the resonator. Their amplitudes change with time. These factors make the study much more complicated with respect to that performed in Chap. 2 for the steady-state theory of the FEL amplifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. J.M.J. Madey, J. Appl. Phys. 42 1906 (1971)

    Article  Google Scholar 

  2. F.A. Hopf, et al., Opt. Commun. 18 413 (1976)

    Article  Google Scholar 

  3. W.B. Colson, Phys. Lett. A 64 190 (1977)

    Google Scholar 

  4. C.M. Tang and P. Sprangle, J. Appl. Phys. 53 831 (1981)

    Article  Google Scholar 

  5. W.B. Colson and P. Elleaume, Appl. Phys. B29 101 (1982)

    Article  Google Scholar 

  6. I. Schnitzer and A. Cover, Nucl. Instrum. and Methods A 237 124 (1985)

    Article  Google Scholar 

  7. J. Blau and W.B. Colson, Nucl. Instrum. and Methods A 259 198 (1987)

    Article  Google Scholar 

  8. G. Dattoli, et al., Nucl. Instrum. and Methods A 285 108 (1989)

    Article  Google Scholar 

  9. W.B. Colson, IEEE J. Quantum Electron. 17 1417 (1981)

    Article  Google Scholar 

  10. B.W.J. McNeil, Nucl. Instrum. and Methods A 296 388 (1990)

    Article  Google Scholar 

  11. E.L. Saldin, E.A. Schneidmiller and M.V. Yurkov, Opt. Commun. 102 360 (1993)

    Article  Google Scholar 

  12. N.A. Vinokurov, Proc. 10th Int. Conf. on High Energy Charged Particle Accelerators (Serpukhov, 1977 ), Vol. 2, p. 454

    Google Scholar 

  13. E.L. Saldin, E.A. Schneidmiller and M.V. Yurkov, Opt. Commun. 103 297 (1993)

    Article  Google Scholar 

  14. P. Sprangle, C.M. Tang and I. Bernstein, Phys. Rev. A 28 2300 (1983)

    Article  Google Scholar 

  15. G. Shvets and J.S. Wurtele, Nucl. Instrum. and Methods A 393 273 (1997)

    Article  Google Scholar 

  16. A.H. Ho, R.H. Pantell and J. Feinstein, IEEE J. Quantum Electron. 23 1545 (1987)

    Article  Google Scholar 

  17. H. Leboutet, Proc. Particle Accelerator Conf. (San Francisco, 1991 ), Vol. 5, p. 2763

    Google Scholar 

  18. E.L. Saldin, E.A. Schneidmiller and M.V. Yurkov, Phys. Lett. A 185 469 (1994)

    Article  Google Scholar 

  19. E.L. Saldin, E.A. Schneidmiller and M.V. Yurkov, Opt. Commun. 107 507 (1994)

    Article  Google Scholar 

  20. N.M. Kroll and M.N. Rosenbluth, Physics of Quantum Electr., Vol. 7 (Addison-Wesley, Reading, MA), p. 89, 1980

    Google Scholar 

  21. W.B. Colson and R.A. Freedman, Opt. Commun. 46 37 (1983)

    Article  Google Scholar 

  22. J.E. Sollid et al., Nucl. Instrum. and Methods A 285 147 (1989)

    Article  Google Scholar 

  23. A. Al-Abawi et al., Opt. Commun. 30 235 (1979)

    Article  Google Scholar 

  24. G. Dattoli, A. Marino and A. Renieri, Opt. Commun. 35 407 (1980)

    Article  Google Scholar 

  25. P. Elleaume, IEEE J. Quantum Electron. 21 1012 (1985)

    Article  Google Scholar 

  26. G. Dattoli, et al., Phys. Rev. A 37 4334 (1988)

    Article  MathSciNet  Google Scholar 

  27. S. Ishii, G. Shvets and J.S. Wurtele, Nucl. Instrum. and Methods A 358 489 (1995)

    Article  Google Scholar 

  28. N. Piovella, et al., Phys. Rev. E52 5470 (1995)

    Google Scholar 

  29. A. Renieri, Nuovo Cim. 53B 160 (1979)

    Article  Google Scholar 

  30. G. Dattoli and A. Renieri, Nuovo Cim. 59B 1 (1980)

    Article  Google Scholar 

  31. P. Elleaume, J. de Physique 45 997 (1984)

    Article  Google Scholar 

  32. G. Dattoli, L. Giannessi and A. Renieri, Nucl. Instrum. and Methods A 358 338 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saldin, E.L., Schneidmiller, E.A., Yurkov, M.V. (2000). One-Dimensional Theory of the FEL Oscillator. In: The Physics of Free Electron Lasers. Advanced Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04066-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04066-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08555-0

  • Online ISBN: 978-3-662-04066-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics