Skip to main content

Mutation: Induction by Ionizing Radiation and Chemicals

  • Chapter
Human Genetics

Abstract

Public Interest in Induced Mutation. The preceding chapter discussed spontaneous mutations. “Spontaneous” here means that these mutations are unpredictable and without known cause, even though we know that some conditions — such as parental age — may enhance the probability of mutation. This probability increases under the influence of certain agents, such as energy-rich radiation and a number of chemicals. Since human beings in their normal environments are exposed to a variety of these agents, research on induced mutation is receiving more and more attention from the general public. Relatively large amounts of money have been allotted to this work, and scientists are expected to advise political authorities as to protective measures. In regard to radiation-induced mutations, an appropriate return from these investments has been forthcoming for a number of years. The World Health Organization, the International Commission on Radiation Protection (ICRP), the United States National Academy of Sciences, and other influential organizations have established expert groups and, with their help, have published estimates of genetic risks. There are still many gaps in our knowledge, particularly regarding the effect of low-level radiation on humans but a fairly coherent picture of the radiation threat is now emerging. Relatively little is known about the possible impact of environmentally induced mutations by chemicals.

I regard it as a piece of relatively good news for society that our genetic material does not appear to be as susceptible to the mutagenic effects of ionizing radiation as was at some time feared ... My best guess is that at currently regulated levels of chemical exposures, there is no more of a genetic problem [of chemical mutagenesis] than there is with respect to ... radiation exposure.

(J. V. Neel, Physician to the Gene Pool, 1994)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altland K, Kaempfer M, Forssbohm M, Werner W (1982) Monitoring for changing mutation rates using blood 22. samples submitted for PKU screening. In: Bonaiti-Pellié C, et al (eds) The unfolding genome. Liss, New York, 23. pp 277–287 (Human genetics, part A)

    Google Scholar 

  2. Ames BN, McCann J, Yamasaki E (1975) Methods for detecting carcinogens and mutagens with the Salmonella/ mammalian microsome mutagenicity test. Mutat Res 31: 347–364 24.

    Google Scholar 

  3. Ames BN, Profet M, Gold LS (1990) Dietary pesticides (99.99% of all natural) and nature’s chemicals and synthetic chemicals: comparative toxicology. Proc Natl Acad Sci USA 87: 7777–7786

    Article  PubMed  CAS  Google Scholar 

  4. Anonymous (1982–1992) Ionizing radiation: sources and biological effects. United Nations Scientific Committee 25. on the Effects of Atomic Radiation. United Nations, New York

    Google Scholar 

  5. Anonymous (1982) Identifying and estimating the genet- 26. is impact of chemical environmental mutagens. National Academy Press, Washington

    Google Scholar 

  6. Auerbach C, Robson JM (1946) Chemical production of 27. mutations. Nature 157: 302

    Article  PubMed  CAS  Google Scholar 

  7. Barcinski MA, Abreu MC, de Almeida JCC, Naya JM, Fonseca LG, Castro LE (1975) Cytogenetic investigation 28. in a Brazilian population living in an area of high natural radioactivity. Am J Hum Genet 27: 802–806

    PubMed  CAS  Google Scholar 

  8. Barthelmess A (1956) Mutagene Arzneimittel. Arzneimit- 29. telforsch 6: 157

    CAS  Google Scholar 

  9. Barthelmess A (1970) Mutagenic substances in the human environment. In: Vogel F, Röhrborn G (eds) Chemical mutagenesis in mammals and man. Springer, Berlin Heidelberg New York, pp 69–147

    Chapter  Google Scholar 

  10. Barthelmess A (1973) Erbgefahren im Zivilisationsmilieu. 30. Goldmann, Munich

    Google Scholar 

  11. Bauchinger M (1968) Chromosomenaberrationen und ihre zeitliche Veränderung nach Radium-Röntgentherapie 31. gynäkologischer Tumoren. Strahlentherapie 135: 553–564

    PubMed  CAS  Google Scholar 

  12. Bloom AB (1972) Induced chromosome aberrations in man. Adv Hum Genet 3: 99–172

    CAS  Google Scholar 

  13. Bodmer WF, Cavalli-Sforza LL (1976) Genetics, evolution 32. and man. Freeman, San Francisco

    Google Scholar 

  14. Brewen JG, Luippold HE (1971) Radiation-induced hu 33. man chromosome aberrations. In vitro dose-rate studies. Mutat Res 12: 305-314

    Google Scholar 

  15. Brewen JG, Preston RJ (1974) Cytogenetic effects of en 34. vironmental mutagens in mammalian cells and the extrapolation to man. Mutat Res 26: 297–305 35.

    Google Scholar 

  16. Carter CO (1977) Monogenic disorders. J Med Genet 14: 316–320

    Article  PubMed  CAS  Google Scholar 

  17. Chen Dequing et al (1982) Cytogenetic investigation in a 36. population living in the high background radiation area. Chin J Radiol Med Protect 2: 61–63

    Google Scholar 

  18. Conen and Lansky (1961) Chromosome damage during nitrogen mustard therapy BMJ 1: 1055–1057

    Google Scholar 

  19. Cremer T, Popp S, Emmerich P et al (1990) Rapid meta-phase and interphase detection of radiation-induced chromosome aberrations in human lymphocytes by chromosomal suppression in situ hybridization. Cytometry 11: 110–118

    Article  PubMed  CAS  Google Scholar 

  20. Cui Yanwei (1982) Heredity diseases and congenital malformation survey in high background radiation area. Chin J Radiol Med Protect 2: 55–57

    Google Scholar 

  21. Czeizel A (1989) Hungarian surveillance of germinal mutations. Hum Genet 82: 359–366

    Article  PubMed  CAS  Google Scholar 

  22. Czeizel A (1989) Population surveillance of sentinel anomalies. Mutat Res 212: 3–9

    Article  PubMed  CAS  Google Scholar 

  23. Czeizel A, Sankaranarayanan K (1984) The load of genetic and partially genetic disorders in man. I. Congenital anomalies: estimates of detriment in terms of years of life lost and years of impaired life. Mutat Res 128: 73–103

    Article  PubMed  CAS  Google Scholar 

  24. Czeizel A, Sankaranarayanan K, Losenci A et al (1988) The load of genetic and partially genetic diseases in man. II. Some selected common multifactorial diseases: estimates of population prevalence and of detriment in terms of years of lost and impaired life. Mutat Res 196: 259–292

    Article  PubMed  CAS  Google Scholar 

  25. Czeizel A, Sankaranarayanan K, Szondi M (1990) The load of genetic and partially genetic diseases in man. III. Mental retardation. Mutat Res 232: 291–303

    Google Scholar 

  26. Deng Shaozhuang et al (1982) Birth survey in high background radiation area. Chin J Radiol Med Protection 2: 60

    Google Scholar 

  27. Ehling UH, Charles DJ, Favor J et al (1985) Induction of gene mutations in mice: the multiple end-point approach. Mutat Res 150: 393–401

    Article  PubMed  CAS  Google Scholar 

  28. Ford CE, Searle AG, Evans EP, West BJ (1969) Differential transmission of translocation induced in spermatogonia of mice by X-irradiation. Cytogenetics 8: 447–470

    Article  PubMed  CAS  Google Scholar 

  29. Ford CE, Evans EP, Searle AG (1978) Failure of irradiation to induce Robertsonian translocations in germ cells of male mice. In: Conference on mutations: their origin, nature and potential relevance to genetic risk in man. Boldt, Boppard, pp 102–108 ( Jahreskonferenz 1977, Zentrallaboratorium für Mutagenitätsprüfungen )

    Google Scholar 

  30. Fuhrmann W, Vogel F (1983) Genetic counseling, 3 rd edn. Springer, Berlin Heidelberg New York (Heidelberg science library 10 )

    Chapter  Google Scholar 

  31. Grüneberg H, Bains GS, Berry RJ, Riles L, Smith CAB (1966) A search for genetic effects of high natural radioactivity in South India. Mem Med Res Council (London)

    Google Scholar 

  32. Harris H (1980) The principles of human biochemical genetics, 4 th edn. North-Holland, Amsterdam

    Google Scholar 

  33. High Background Radiation Research Group, China (1980) Health survey in high background radiation area in China. Science 209: 877–880

    Google Scholar 

  34. Hollaender A (ed) (1954–1956) Radiation biology, 4 vols. McGraw-Hill, New York

    Google Scholar 

  35. Hollaender A (ed) (1973) Chemical mutagens. Principles and methods for their detection, vol 3. Plenum, New York

    Google Scholar 

  36. Hook EB, Cross PK, Regal RR (1984) The frequency of 47, + 21, 47, + 18 and 47, + 13 at the uppermost extremes of maternal ages: results on 56094 fetuses studied prena-et 68: 211–220

    CAS  Google Scholar 

  37. Ilvin LA, Balonov MI, Buldakov LA et al (1990) Radio-contamination patterns and possible health consequences of the accident at the Chernobyl nuclear power station. J Radiol Protect 10: 3–28

    Article  Google Scholar 

  38. Jablon S, Kato H (1970) Childhood cancer in relation to prenatal exposure to A-bomb radiation. Lancet 2: 1000

    Article  PubMed  CAS  Google Scholar 

  39. Kazakov VS, Demidchik EP, Astatchova LN (1992) Thyroid cancer after Tschernobyl. Nature 359: 21–22

    Article  PubMed  CAS  Google Scholar 

  40. King RA, Rotter JI, Motulsky AG (eds) (1992) The genetic basis of common diseases. Oxford University Press, New York

    Google Scholar 

  41. Kochupillai N, Verma JC, Grewal MS, Ramalingaswami V (1976) Down’s syndrome and related abnormalities in an area of high background radiation in coastal Kerala. Nature 262: 60–61

    Article  PubMed  CAS  Google Scholar 

  42. Lea DE, Catcheside DG (1942) The mechanism of the induction by radiation of chromosome aberrations in Tradescantia. J Genet 44: 216–245

    Article  Google Scholar 

  43. Lejeune J, Turpin R, Rethoré MO (1960) Les enfants nés de parents irradiés (cas particuliers de la sex-ratio). 9th International Congress on Radiology, July 23–30, 1959, Munich, pp 1089–1096

    Google Scholar 

  44. Lu Bingxin et al (1982) Survey of hereditary ophthalmopathies and congenital ophthalmic malformations in high background areas. Chin J Radiol Med Protect 2: 58–59

    Google Scholar 

  45. tiers H (1955) Zur Frage der Erbschädigung durch tumortherapeutische Cytostatica. Z Krebsforsch 6o: 528

    Google Scholar 

  46. Lüning KG, Searle AG (1970) Estimates of the genetic risks from ionizing irradiation. Mutat Res 12: 291–304

    Google Scholar 

  47. Malling HV, DeSerres FJ (1973) Genetic alterations at the molecular level in X-ray induced ad-3B mutants of Neurospora crassa. Radiat Res 53: 77–87

    Article  PubMed  CAS  Google Scholar 

  48. Mattei JF, Mattei MG, Ayme S, Siraud F (1979) Origin of the extra chromosome in trisomy 21. Hum Genet 46: 107–110

    Article  PubMed  CAS  Google Scholar 

  49. Mayor JW (1924) The production of nondisjunction by X-rays. J Exp Zool 39: 381–432

    Article  Google Scholar 

  50. McCann J, Ames BN (1976) Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals: discussion. Proc Natl Acad Sci USA 73: 950–954

    Article  PubMed  CAS  Google Scholar 

  51. McCann J, Choi E, Yamasaki E, Ames BN (1975) Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals. Proc Natl Acad Sci USA 72: 5133–5139

    Google Scholar 

  52. Modell B, Kuliev A (1990) Changing paternal age distribution and the human mutation rate in Europe. Hum Genet 86: 198–202

    Article  PubMed  CAS  Google Scholar 

  53. Mohrenweiser HW, Branscomb EW (1989) Molecular approaches to the detection of germinal mutations in mammalian organisms including man. In: Jolies G, Cordier A (eds) New trends in genetic risk assessment. Academic, New York, pp 41–56

    Google Scholar 

  54. Muller HJ (1927) Artificial transmutation of the gene. Science 66: 84–87

    Article  PubMed  CAS  Google Scholar 

  55. Mulvihill JJ, Connelly RR, Austin DF et al (1987) Cancer in offspring of long-term survivors of childhood and adolescent cancer. Lancet 2: 813–817

    Article  PubMed  CAS  Google Scholar 

  56. Neel JV, Lewis SE (1990) The comparative radiation genetics of humans and mice. Annu Rev Genet 24: 327–362

    Article  PubMed  CAS  Google Scholar 

  57. Neel JV, Schull WJ (1991) The children of atomic bomb survivors. A genetic study. National Academy, Washington

    Google Scholar 

  58. Neel JV, Tiffany TO, Anderson NG (1973) Approaches to monitoring human populations for mutation rates and genetic disease. In: Hollaender A (ed) Chemical muta-gens, vol 3. Plenum, New York, pp 105–150

    Chapter  Google Scholar 

  59. Neel JV, Mohrenweiser HW, Meisler MH (1980) Rate of spontaneous mutation of human loci encoding protein structure. Proc Natl Acad Sci USA 77: 6037–6041

    Article  PubMed  CAS  Google Scholar 

  60. Neel JV, Satoh C, Goriki K et al (1986) The rate with which spontaneous mutation alters the electrophoretic mobility of polypeptides. Proc Natl Acad Sci USA 83: 389–393

    Article  PubMed  CAS  Google Scholar 

  61. Neel JV, Schull WS, Awa AA (1989) Implications of the Hiroshima and Nagasaki genetic studies for the estimation of the human “doubling dose” of radiation. Genome 31: 853–859

    Article  PubMed  CAS  Google Scholar 

  62. Newcombe HB, McGregor F (1964) Learning ability and physical wellbeing in offspring from rat populations irradiated over many generations. Genetics 50: 1065–1081

    PubMed  Google Scholar 

  63. Oehlkers F (1943) Die Auslösung von Chromosomenmutationen in der Meiosis durch Einwirkung von Chemikalien. Z Induktiven Abstammungs Vererbungslehre 81: 313–341

    Google Scholar 

  64. Rapoport IA (1946) Carbonyl compounds and the chemical mechanism of mutation. C R Acad Sci USSR 54: 65

    CAS  Google Scholar 

  65. Reichert W, Buselmaier W, Vogel F (1984) Elimination of X-ray-induced chromosomal aberration in the progeny of female mice. Mutat Res 139: 87–94

    Article  PubMed  CAS  Google Scholar 

  66. Röhrborn G (1965) Über mögliche mutagene Nebenwirkungen von Arzneimitteln beim Menschen. Hum Genet 1: 205–231

    Article  Google Scholar 

  67. Röhrborn G (1970) The dominant lethals: method and cytogenetic examination of early cleavage stages. In: Vogel F, Röhrborn G (eds) Chemical mutagenesis in mammals and man. Springer, Berlin Heidelberg New York, pp 148–155

    Chapter  Google Scholar 

  68. Röhrborn G et al (1978) A correlated study of the cytogenetic effect of INH on cell systems of mammals and man conducted by thirteen laboratories. Hum Genet 42: 1–60

    Article  Google Scholar 

  69. Russell LB, Saylors CL (1963) The relative sensitivity of various germ cell stages of the mouse to radiation-induced nondisjunction, chromosome losses and deficiency. In: Sobels FH (ed) Repair from genetic damage and differential radiosensitivity in germ cells. Pergamon, Oxford, pp 313–340

    Google Scholar 

  70. Russell LB, de Hamer DL, Montgomery CS (1974) Analysis of 3o c-locus lethals by viability of biochemical studies. Biol Div Annu Prog Rep ORNL 4993: 119–120

    Google Scholar 

  71. Russell WL, Russell LB, Kelly EM (1958) Radiation dose rate and mutation frequency. Science 128: 1546–1550

    Article  PubMed  CAS  Google Scholar 

  72. Russel WL, Kelly EM, Hunsicker PR et al (1972) Effect of radiation dose-rate on the induction of X-chromosome loss in female mice. In: Report of the United Nations Science Committee on the effect of atomic radiations. United Nations, New York (Ionizing radiation: levels and effects, vol 2: Effects)

    Google Scholar 

  73. Sankaranarayanan K (1991) Ionizing radiation and genetic risks. I. Epidemiological, population genetic, biochemical and molecular aspects of Mendelian diseases. Mutat Res 258: 349

    Google Scholar 

  74. Sankaranarayanan K (1991) Ionizing radiation and genetic risks. II. Nature of radiation-induced mutations in experimental mammalian in vivo systems. Mutat Res 258: 51–73

    Article  PubMed  CAS  Google Scholar 

  75. Sankaranarayanan K (1991) Ionizing radiation and genetic risks. III. Nature of spontaneous and radiation-induced mutations in mammalian in vitro systems and mechanisms of induction of mutations by radiation. Mu-tat Res 258: 75–97

    Article  CAS  Google Scholar 

  76. Sankaranarayanan K (1991) Ionizing radiation and genetic risks. IV. Current methods, estimates of risk of Medelian disease, human data and lessons from biochemical and molecular studies of mutations. Mutat Res 258: 99–122

    Article  PubMed  CAS  Google Scholar 

  77. Sasaki MS, Miyata H (1968) Biological dosimetry in atomic bomb survivors. Nature 220: 1189–1193

    Article  PubMed  CAS  Google Scholar 

  78. Schmidt H (1973) Wahrscheinliche genetische Belastung der Bevölkerung mit INH (Isonikotinsäure-Hydrazid). Hum Genet 20: 31–45

    Article  CAS  Google Scholar 

  79. Scholte PJL, Sobels FH (1964) Sex ratio shift among progeny from patients having received therapeutic X-radiation. Am J Hum Genet 16: 26–37

    PubMed  CAS  Google Scholar 

  80. Schull WJ, Neel JV (1958) Radiation and the sex ratio in man. Science 128: 343–348

    Article  PubMed  CAS  Google Scholar 

  81. Schull WJ, Neel JV (1962) Maternal radiation and mongolism. Lancet 2: 537–538

    Article  Google Scholar 

  82. Schull WJ, Neel JV, Hashizume A (1968) Some further observations on the sex ratio among infants born to survivors of the atomic bombings of Hiroshima and Nagasaki. Am J Hum Genet 18: 328–338

    Google Scholar 

  83. Schull WJ, Otake M, Neel JV (1981) Genetic effects of the atomic bombs: a reappraisal. Science 213: 1220–1227

    Article  PubMed  CAS  Google Scholar 

  84. Searle AG (1972) Spontaneous frequencies of point mutations in mice. Hum Genet 16: 33–38

    Article  CAS  Google Scholar 

  85. Searle AG, Edwards JH (1986) The estimation of risks from the induction of recessive mutations after exposure to ionising radiation. J Med Genet 23: 220–226

    Article  PubMed  CAS  Google Scholar 

  86. Sigler AT, Lilienfeld AM, Cohen B-H, Westlake JE (1965) Radiation exposure in parents with mongolism (Down’s syndrome). Johns Hopkins. Med J 117: 374

    Google Scholar 

  87. Strobel D, Vogel F (1958) Ein statistischer Gesichtspunkt für das Planen von Untersuchungen über Änderungen der Mutationsrate beim Menschen. Acta Genet Stat Med 8: 274–286

    Google Scholar 

  88. Tanaka K, Ohkura K (1958) Evidence for genetic effects of radiation on offspring of radiologic technicians. Jpn J Hum Genet 3: 135–145

    Google Scholar 

  89. Tang BK, Grant DM, Kalow W (1983) Isolation and identification of 5-acetylamino-6-formylamino-3-methyluracil as a major metabolite of caffeine in man. Drug Metab Dispos 11: 218–220

    PubMed  CAS  Google Scholar 

  90. Tough IS, Buckton KE, Baikie AG, Court Brown WM (1960) X-ray induced chromosome damage in man. Lancet 2: 849–851

    Article  PubMed  CAS  Google Scholar 

  91. Traut H (1976) Effects of ionizing radiation on DNA. In: Hüttermann J, Köhnlein W, ‘Houle R (eds) Molecular biology, biochemistry and biophysics, vol 27. Springer, Berlin Heidelberg New York, pp 335–347

    Google Scholar 

  92. Uchida IA, Holunga R, Lawler C (1968) Maternal radiation and chromosomal aberrations. Lancet 2: 1045–1049

    Article  PubMed  CAS  Google Scholar 

  93. Uchida IA, Lee CPV, Byrnes EM (1975) Chromosome aberrations induced in vitro by low doses of radiation: Nondisjunction in lymphocytes of young adults. Am J Hum Genet 27: 419–429

    Google Scholar 

  94. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (1982–1992) Ionizing radiation: sources and biological effects. United Nations, New York (UNSCEAR reports, every four years)

    Google Scholar 

  95. Vogel F (1970) Monitoring of human populations. In: Vogel F, Röhrborn G (eds) Chemical mutagenesis in mammals and man. Springer, Berlin Heidelberg New York, pp 445–452

    Chapter  Google Scholar 

  96. Vogel F (1992) Risk calculations for hereditary effects of ionising radiation in humans. Hum Genet 89: 127–146

    Article  PubMed  CAS  Google Scholar 

  97. Vogel F, Altland K (1982) Utilization of material from PKU-screening programs for mutation screening. Prog Mutat Res 3: 143–157

    Google Scholar 

  98. Vogel F, Jäger P (1969) The genetic load of a human population due to cytostatic agents. Humangenetik 7: 287–304

    Article  PubMed  CAS  Google Scholar 

  99. Vogel F, Röhrborn G (eds) (1970) Chemical mutagenesis in mammals and man. Springer, Berlin Heidelberg New York

    Google Scholar 

  100. Vogel F, Röhrborn G, Schleiermacher E, Schroeder TM (1969) Strahlengenetik der Säuger. Thieme, Stuttgart (Fortschr Allg Kl in Humangen)

    Google Scholar 

  101. Wei LX, Zha YR, Tao ZF (1987) Recent advances of health survey in high background radiation areas in Yangjiang, China. In: International symposium on biological effects of low-level radiation. pp 1–17

    Google Scholar 

  102. Wei LX, Zha YR, Tao ZF et al (1990) Epidemiological investigation of radiological effects in high background radiation areas in Yangjiang, China. J Radiat Res (Tokyo) 31: 119–136

    Google Scholar 

  103. Yoshimoto Y, Neel JV, Schull W] et al (1990) Malignant tumors during the first 2 decades of life in the offspring of atomic bomb survivors. Am J Human Genet 46: 1041–1052

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vogel, F., Motulsky, A.G. (1997). Mutation: Induction by Ionizing Radiation and Chemicals. In: Human Genetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03356-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03356-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03358-6

  • Online ISBN: 978-3-662-03356-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics