Skip to main content

The Contribution of Cell Wall Degrading Enzymes to Pathogenesis of Fungal Plant Pathogens

  • Chapter
Agricultural Applications

Part of the book series: The Mycota ((MYCOTA,volume 11))

Abstract

The plant cell wall functions as a barrier to biotic and abiotic agents. Plant pathogenic bacteria and fungi produce cell wall degrading enzymes (CWDEs) which are believed to degrade this barrier, thereby facilitating both inter- and intracellular growth and providing nutrients to the invader. A pectate lyase from the bacterium Erwinia chrysanthemi was the first CWDE that was shown to be required for full virulence (Roeder and Colmer 1985). Subsequent molecular genetic studies have shown that many other bacterial CWDEs are virulence factors (reviewed by Hugouvieux-Cotte-Pattat et al. 1996). It took many years before similar evidence was obtained for the involvement of fungal CWDEs in pathogenesis, in spite of several efforts (reviewed by Walton 1994; Annis and Goodwin 1997). Eventually, an endopolygalacturonase from Aspergillus fiavus was shown to play a role in the invasion of cotton bolls (Shieh et al. 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akimitsu K, Kohmoto K, Otani H, Nishimura S (1989) Host-specific effects of toxin from the rough lemon pathotype of Alternaria alternata on mitochondria. Plant Physiol 89:925–931

    Article  PubMed  CAS  Google Scholar 

  • Albersheim P, Anderson AJ (1971) Proteins from plant cell walls inhibit polygalacturonases secreted by plant pathogens. Proc Natl Acad Sci USA 68:1815–1819

    Article  PubMed  CAS  Google Scholar 

  • Albersheim P, Darvill AG, O’Neill MA, Schols HA, Voragen AGJ (1996) An hypothesis: the same six polysaccharides are components of the primary cell walls of all higher plants. In: Visser J, Voragen AGJ (eds) Progress in biotechnology, vol14. Pectins and pectinases. Elsevier, Amsterdam, pp 47–55

    Chapter  Google Scholar 

  • Allan JD, Thoma JA (1976) Subsite mapping of enzymes. Application of the depolymerase computer model to two a-amylases. Biochem J 159:121–132

    Google Scholar 

  • Annis SL, Goodwin PH (1997) Recent advances in the molecular genetics of plant cell wall-degrading enzymes produced by plant pathogenic fungi. Eur J Plant Pathol 103:1–14

    Article  CAS  Google Scholar 

  • Apel-Birkhold PC, Walton JD (1996) Cloning, disruption, and expression of two ß-1,4-xylanase genes, XYL2 and XYL3, from Cochliobolus carbonum. Appl Environ Microbiol 2:4129–4135

    Google Scholar 

  • Aspinall GO (1980) Chemistry of cell wall polysaccharides. In: Preiss J (ed) The biochemistry of plants, vol 3. Academic Press, New York, pp 473–500

    Google Scholar 

  • Bateman DF, Basham HG (1976) Degradation of plant cell walls and membranes by microbial enzymes. In: Heitefuss R, Williams PH (eds) Encyclopedia of plant physiology, vol 4. Springer, Berlin Heidelberg New York, pp 316–355

    Google Scholar 

  • Benito EP, ten Have A, van’t Klooster JW, van Kan JAL (1998) Fungal and plant gene expression during synchronized infection of tomato leaves by Botrytis cinerea. Eur J Plant Pathol 104:207–220

    Article  CAS  Google Scholar 

  • Bergey DR, Howe GA, Ryan CA (1996) Polypeptide signalling for plant defensive genes exhibits analogies to defense signalling molecules in animals. Proc Natl Acad Sci USA 93:12052–12058

    Article  Google Scholar 

  • Bergmann CW, Ito Y, Singer D, Albersheim P, Darvill AG, Benhamou N, Nuss L, Salvi G, Cervone F, Lorenzo G de (1994) Polygalacturonase-inhibiting protein accumulates in Phaseolus vulgaris L. in response to wounding elicitors and fungal infection. Plant J 5:625–634

    Article  PubMed  CAS  Google Scholar 

  • Bitton F, Levis C, Fortini D, Pradier JM, Brygoo Y(1999) Botrytis cinerea strain T4 cDNA library under conditions of nitrogen deprivation. Direct submission to the EMBL/GenBank/DDBJ databases (Genoscope, centre national de sequençage, Evry, France)

    Google Scholar 

  • Bowen JK, Templeton MD, Sharrock KR, Crowhurst RN, Rikkerink EHA (1995) Gene inactivation in the plant pathogen Glomerella cingulata: three strategies for the disruption of the pectin lyase gene pnlA. Mol Gen Genet 246:196–205

    Article  PubMed  CAS  Google Scholar 

  • Brillouet J-M, Joseleau J-P (1987) Investigation of the structure of a heteroxylan from the outer pericarp (beeswing bran) of wheat kernel. Carbohydr Res 159:109–126

    Article  CAS  Google Scholar 

  • Brockmann B, Smit R, Tudzynski P (1992) Characterization of an extracellular ββ-1,3-glucanase of Claviceps purpurea. Physiol Mol Plant Pathol 40:191–201

    Article  Google Scholar 

  • Bussink HJ, Buxton DFP, Fraaye BA, de Graaff LH, Visser J (1992) The polygalacturonases of Aspergillus niger are encoded by a family of diverged genes. Eur J Biochem 208:83–90

    Article  PubMed  CAS  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  PubMed  CAS  Google Scholar 

  • Carpita NC, McCann M, Griffing LR (1996) The plant extracellular matrix: news from the frontier. Plant Cell 8:1451–1463

    PubMed  CAS  Google Scholar 

  • Cervone F, Hahn MG, Lorenzo G de, Darvill A, Albersheim P (1989) Host-pathogen interactions. XXXIII. A plant protein converts a fungal pathogenesis factor into an elicitor of plant defense responses. Plant Physiol 90: 542–548

    Article  PubMed  CAS  Google Scholar 

  • Cervone F, de Lorenzo G, Aracri B, Bellincampi D, Capone I, Caprari C, Clark AJ, Devoto A, Leckie F, Mattei B, Nuss L, Salvi G (1998) Molecular analysis of the polygalacturonase-inhibiting protein (PGIP) gene family in Phaseolus vulgaris. 1. In: Kohmoto K, Yoder OC (eds) Molecular genetics of host specific toxins in plant diseases; developments in plant pathology, vol 13. Kluwer, Dordrecht, pp 297–307

    Chapter  Google Scholar 

  • Chaure P, Gurr SJ, Spanu P (2000) Stable transformation of Erysiphe graminis an obligate biotrophic pathogen of barley. Nature Biotechnol 18:205–207

    Article  CAS  Google Scholar 

  • Chen HJ, Smith DL, Starrett DA, Zhou DB, Tucker ML, Solomos T, Gross KC (1997) Cloning and characterization of a rhamnogalacturonan hydrolase gene from Botrytis cinerea. Biochem Mol Biol Int 43:823–838

    PubMed  CAS  Google Scholar 

  • Christiansen SK, Knudsen S, Giese H (1995) Biolistic transformation of the obligate plant pathogenic fungus Erysiphe graminis f. sp. hordei. Curr Genet 29:100–102

    Article  PubMed  CAS  Google Scholar 

  • Coutinho PM, Henrissat B (1999) Carbohydrate-active enzymes server at http://afmb.cnrs-mrs.fr/ -pedro/CAZY/db.html

    Google Scholar 

  • Deising H, Rauscher M, Haug M, Heiler S (1995) Differentiation and cell wall degrading enzymes in the obligately biotrophic rust fungus Uromyces viciae-fabae. Can J Bot 735:624–631

    Article  Google Scholar 

  • de Lorenzo G, Castoria R, Bellincampi D, Cervone F (1997) Fungal invasion enzymes and their inhibition, In: Carrol GC, Tudzynski P (eds) The Mycota, vol V. Springer, Berlin Heidelberg New York, pp 61–83

    Google Scholar 

  • d’Enfert C (1996) Selection of mutiple disruption events in Aspergillus fumigatus using the orotidine-5′decarboxylase gene, pyrG, as a unique transformation marker. Curr Genet 30:76–82

    Article  PubMed  Google Scholar 

  • Desiderio A, Aracri B, Leckie F, Mattei B, Salvi G, van Roeckel JCS, Baulcombe DC, Melchers LS, de Lorenzo G, Cervone F (1997) Polygalacturonaseinhibiting proteins (PGIPs) with different specificities are expressed in Phaseolus vulgaris. Mol Plant Microbe Interact 10:852–860

    Article  PubMed  CAS  Google Scholar 

  • Devoto A, Clark AJ, Nuss L, Cervone F, de Lorenzo G (1997) Developmental and pathogen induced accumulation of transcripts of polygalacturonase inhibiting protein in Phaseolus vulgaris 1. Planta 202:284–292

    Article  CAS  Google Scholar 

  • De Vries JAF, Rombouts M, Voragen AGJ, Pilnik W (1982) Enzymic degradation of apple pectins. Carbohydr Polym 2:25–33

    Article  Google Scholar 

  • de Wit PJGM (1997) Pathogen avirulence and plant resistance: a key role for recognition. Trends Plant Sci 2:452–458

    Article  Google Scholar 

  • Drawert F, Krefft M (1978) Karakterisierung extrazellularer Proteine und Enzyme aus Pektin Kulturfiltraten von Botrytis cinerea. Phytochemistrv 17:887–890

    Article  CAS  Google Scholar 

  • Dutton MV, Evans CS (1996) Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can J Microbiol 42:881–895

    Article  CAS  Google Scholar 

  • Elad Y, Evensen K (1995) Physiological aspects of resistance to Botrytis cinerea. Phytopathology 85:637–643

    Google Scholar 

  • Fry SC (1982) Isodityrosine, a new cross-linking amino acid from plant cell-wall glycoprotein. Biochem J 204: 449–455

    PubMed  CAS  Google Scholar 

  • Gao SJ, Choi GH, Shain L, Nuss DL (1996) Cloning and targeted disruption of enpg1 encoding the major in vitro extracellular endopolygalacturonase of the chestnut blight fungus Cryphonectria parasitica. Appl Environ Microbiol 62:1984–1990

    PubMed  CAS  Google Scholar 

  • Garcia-Maceira FI, Di-Pietro A, Roncero MIG (2000) Cloning and disruption of pgx4 encoding an in planta expressed exopolygalacturonase from Fusarium oxysporum. Mol Plant-Microbe Interact 13:359–365

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Maceira FI, Di-Pietro A, Huertas GMD, Ruiz RMC, Roncero, MIG (2001) Molecular characterization of an endopolygalacturonase from Fusarium oxysporum expressed during early stages of infection. Appl Environ Microbiol 67:2191–2196

    Article  PubMed  CAS  Google Scholar 

  • Giesbert S, Lepping H-B, Tenberge KB, Tudzynski P (1998) The xylanolytic system of Claviceps purpurea: cytological evidence for secretion of xylanases in infected rye tissue and molecular characterization of two xylanase genes. Phvtopathologv 88:1020–1030

    Article  CAS  Google Scholar 

  • Görlach JM, van der Knaap E, Walton JD (1998) Cloning and targeted disruption of MLG1 a gene encoding two of three extracellular mixed-linked glucanases of Cochliobolus carbonum. Appl Environ Microbiol 64:385–391

    PubMed  Google Scholar 

  • Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10:751–757

    Article  PubMed  CAS  Google Scholar 

  • Guillon F, Thibault J-F (1989) Enzymic hydrolysis of the “hairy” fragments of sugarbeet pectins. Carbohydr Res 190:97–108

    Article  CAS  Google Scholar 

  • Harmsen JAM, Kusters-van Someren MA, Visser J (1990) Cloning and expression of a second Aspergillus niger pectin lyase gene (pelA): indications of a pectin lyase gene family in A niger. Curr Genet 18:161–166

    Article  PubMed  CAS  Google Scholar 

  • Hugouvieux-Cotte-Pattat N, Condemine G, Nasser W, Reverchon S (1996) Regulation of pectinolysis in Erwinia chrysanthemi. Annu Rev Microbiol 50: 213–257

    Article  PubMed  CAS  Google Scholar 

  • Hugouvieux V, Centis S, Lafitte C, Esquerré-Tugayé MT (1997) Induction by a-1 arabinose and a-1 rhamnose of endopolygalacturonase gene expression in Colletotrichum lindemuthianum. Appl Environ Microbiol 63:2287–2292

    PubMed  CAS  Google Scholar 

  • Ishii T (1991) Isolation and characterization of a diferuloyl arabinoxylan hexasaccharide from bamboo shoot cell-walls. Carbohydr Res 219:15–22

    Article  PubMed  CAS  Google Scholar 

  • Isshiki A, Akimitsu K, Yamamoto M, Yamamoto H (2001) Endopolygalacturonase is essential for citrus black rot caused by Alternaria citri but not brown spot caused by Alternaria alternata. Mol Plant-Microbe Interact 14:749–757

    Article  PubMed  CAS  Google Scholar 

  • Jarvis WR (1977) Botryotinia and Botrytis species. Taxonomy and pathogenicity. Can Dept Agric, Monograph 15. Harrow, Ontario

    Google Scholar 

  • Jones DA, Thomas CM, Hammond-Kosack KE, Balint Kurti PJ, Jones JDG (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266:789–793

    Article  PubMed  CAS  Google Scholar 

  • Joosten MHAJ, Hendrickx JM, de Wit PJGM (1990) Carbohydrate composition of apoplastic fluids isolated from tomato leaves inoculated with virulent or avirulent races of Cladosporium fulvum. Neth J Plant Pathol 96:103–112

    Article  CAS  Google Scholar 

  • Kester HCM, Benen JAE, Visser J (1999) The exopolygalacturonase from Aspergillus tubingensis is also active on xylogalacturonan. Biotechnol Appl Biochem 30:53–57

    PubMed  CAS  Google Scholar 

  • Koch JL, Nevins DJ (1989) Tomato fruit cell wall. I. Use of purified tomato polygalacturonase and pectin methylesterase to identify developmental changes in pectins. Plant Physiol 91:816–822

    Article  PubMed  CAS  Google Scholar 

  • Luttrell ES (1980) Host-parasite relationships and development of the ergot sclerotium in Claviceps purpurea. Can J Bot 58:942–958

    Article  Google Scholar 

  • Mansfield JW, Richardson A (1981) The ultrastructure of interactions between Botrytis species and broad bean leaves. Physiol Plant Pathol 19:41–48

    Google Scholar 

  • McCann MC, Roberts K (1991) Architecture of the primary cell wall. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, New York, pp 109–129

    Google Scholar 

  • McNeill M, Darvill AG, Fry SC, Albersheim P (1984) Structure and function of the primary cell walls of plants. Annu Rev Biochem 53:625–663

    Article  Google Scholar 

  • Movahedi S, Heale JB (1990) The roles of aspartic proteinase and endo-pectin lyase enzymes in the primary stages of infection and pathogenesis of various host tissues by different isolates of Botrytis cinerea Pers ex Pers. Physiol Mol Plant Pathol 36:303–324

    Article  CAS  Google Scholar 

  • Mower RL, Hancock JG (1975) Mechanism of honeydew formation by Claviceps species. Can J Bot 53: 2826–2834

    Article  CAS  Google Scholar 

  • Müller U (1997) Struktur, Expression und gezielte Inaktivierung von cell, einem vermutlich Cellobiohydrolase-codierenden Gen von Claviceps purpurea. Bibl Mvcol 166:1–100

    Google Scholar 

  • Müller U, Tenberge KB, Oeser B, Tudzynski P (1997) Cel1 probably encoding a cellobiohydrolase lacking the substrate binding domain is expressed in the initial infection phase of Claviceps purpurea on Secale cereale. Mol Plant-Microbe Interact 10:26R-779

    Article  Google Scholar 

  • Mutter MG, Beldman G, Schols HA, Voragen AGJ (1994) Rhamnogalacturonan alpha-L-rhamnopyranohydrolase: a novel enzyme specific for the terminal nonreducing rhamnosyl unit in rhamnogalacturonan regions of pectin. Plant Physiol 106:241–250

    Article  PubMed  CAS  Google Scholar 

  • Mutter M, Colquhoun IJ, Beldman G, Schols HA, Voragen AGJ (1996) Rhamnogalacturonase B from Aspergillus aculeatus is a rhamnogalacturonan a-L-rhamnopyranosyl-(14)-a-D-galactopyranosyluronide lyase. Plant Physiol 110:73–77

    Article  PubMed  CAS  Google Scholar 

  • Mutter M, Pitson SM, Beldman G, Schols HA, Voragen AGJ (1998a) Rhamnoglacturonan alpha-D-galactopy ranosyluronohydrolase: an enzyme that specifically removes the terminal nonreducing galacturonosyl residue in rhamnogalacturonan regions of pectin. Plant Physiol 117:153–163

    Article  PubMed  CAS  Google Scholar 

  • Mutter M, Renard CMGC, Beldman G, Schols HA, Voragen AGJ (1998b) Mode of action of RG-hydrolase and RG-lyase toward rhamnoglacturonan oligomers: characterization of degradation products using RG-rhamnohydrolase and RG-galacturonohydrolase. Carbohydr Res 31:155–164

    Article  Google Scholar 

  • Nothnagel EA, McNeill M, Albersheim P, Dell A(1983) Host-pathogen interactions. XXII. A galacturonic acid oligosaccharide from plant cell walls elicits phytoalexins. Plant Physiol 71:916–926

    Article  PubMed  CAS  Google Scholar 

  • Oeser B, Heidrich P, Müller U, Tenberge KB, Tudzynski P (2002) Polygalacturonase is a pathogenicity factor in the Claviceps purpurea/rye interaction. Fungal Genet Biol (in press)

    Google Scholar 

  • O’Neill M, Darvill AG, Albersheim P (1990) The pectic polysaccharides of primary cell walls. Methods Plant Biochem 2:415–441

    Article  Google Scholar 

  • Parbery DG (1996) Trophism and the ecology of fungi associated with plants. Biol Rev 71:473–527

    Article  Google Scholar 

  • Pařenicová L, Benen JAE, Kester HCM, Visser J (2000a) pgaA and pgaB encode two constitutively expressed endopolygalacturonases of Aspergillus niger. Biochem J 345:637–644

    Article  PubMed  Google Scholar 

  • Pařenicová L, Kester HCM, Benen JAE, Visser J (2000b) Characterization of a novel endopolygalacturonase from Aspergillus niger with unique kinetic properties. FEBS Lett 11:333–336

    Article  Google Scholar 

  • Powell ALT, van Kan JAL, ten Have A, Visser J, Greve LC, Bennett AB, Labavitch JM (2000) Transgenic expression of pear PGIP in tomato limits fungal colonization. Mol Plant-Microbe Interact 13:942–950

    Article  PubMed  CAS  Google Scholar 

  • Prins TW, Tudzynski P, von Tiedemann A, Tudzynski B, ten Have A, Hansen ME, Tenberge K, van Kan JAL (2000) Infection strategies of Botrytis cinerea and related necrotrophic pathogens. In: Kronstadt JW (ed) Fungal pathology. Kluwer, Dordrecht, pp 33–64

    Google Scholar 

  • Ramsey GB (1941) Botrytis and Sclerotinia as potato tuber pathogens. Phytopathology 31:439–448

    Google Scholar 

  • Rebordinos L, Cantoral JM, Prieto MV, Hanson JR, Collado IG (1996) The phytotoxic activity of some metabolites of Botrytis cinerea. Phytochemistry 42: 383–387

    Article  CAS  Google Scholar 

  • Roeder DL, Collmer A (1985) Marker-exchange mutagenesis of a pectate lyase isozyme gene in Erwinia chrysanthemi. J Bacteriol 164:51–56

    PubMed  CAS  Google Scholar 

  • Rogers LM, Kim Y-K, Guo W, González-Candelas L, Li I, Kolattukudy P (2000) Requirement for either a hostor a pectin-induced pectate lyase for infection of Pisum sativum by Nectria haematococca. Proc Natl Acad Sci USA 97:9813–9818

    Article  PubMed  CAS  Google Scholar 

  • Sadava D, Chrispeels MJ (1973) Hydroxyproline-ricn cell wall protein (extensin): role in the cessation of elongation in excised pea epicotyls. Dev Biol 30:49–55

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer HJ, Leykam J, Walton JD (1994) Cloning and targeted gene disruption of EXG1 encoding exo-ß 1,3-glucanase in the phytopathogenic fungus Cochliobolus carbonum. Appl Environ Microbiol 60:594–598

    PubMed  CAS  Google Scholar 

  • Schols HA, Voragen AGJ (1994) Occurrence of pectic hairy regions in various plant cell wall materials and their degradability by rhamnogalacturonase. Carbohydr Res 256:83–95

    Article  CAS  Google Scholar 

  • Schols HA, Bakx EJ, Schipper D, Voragen AGJ (1995) A xylogalacturonan subunit present in the modified hairy regions of apple pectin. Carbohydr Res 279: 265–279

    Article  CAS  Google Scholar 

  • Scott-Craig JS, Panaccione DG, Cervone F, Walton JD (1990) Endopolygalacturonase is not required for pathogenicity of Cochliobolus carbonum on maize. Plant Cell 2:1991–1200

    Google Scholar 

  • Scott-Craig JS, Cheng Y Q, Cervone F, de Lorenzo G, Pitkin JW, Walton JW (1998) Targeted mutants of Cochliobolus carbonum lacking the two major extracellular polygalacturonases. Appl Environ Microbiol 64: 497–1503

    Google Scholar 

  • Sederoff R (1999) Building better trees with antisense. Nature Biotechnol 17:750–751

    Article  CAS  Google Scholar 

  • Shaw BI, Mantle PG (1980) Host infection by Claviceps purpurea. Trans Br Mycol Soc 75:77–90

    Article  CAS  Google Scholar 

  • Shieh M, Brown RL, Whitehead MP, Carey J W, Cotty PJ, Cleveland TE, Dean RA (1997) Molecular genetic evidence for the involvement of a specific polygalacturonase P2c in the invasion and spread of Aspergillus flavus in cotton bolls. Appl Environ Microbiol 63: 3548–3552

    PubMed  CAS  Google Scholar 

  • Simpson SD, Ashford DA, Harvey DJ, Bowles DJ (1998) Short chain oligogalacturonides induce ethylene production and expression of the gene encoding aminocyclopropane 1-carboxylic acid oxidase in tomato plants. Glycobiology 8:579–583

    Article  PubMed  CAS  Google Scholar 

  • St. Garay A (1956) The germination of ergot conidia as affected by host plant, and the culture of ergot on excised roots and embryos of rye. Physiol Plant 9:350–355

    Article  Google Scholar 

  • Stotz HU, Bishop JG, Bergmann CW, Koch M, Albersheim P, Darvill AG, Labavitch JM (2000) Identification of target amino acids that affect interactions of fungal polygalacturonases and their plant inhibitors. Physiol Mol Plant Pathol 56:117–130

    Article  CAS  Google Scholar 

  • Suykerbuyk MEG, van den Vondervoort PJL, Schaap PJ, Visser J (1996) Identification of regulatory mutants of Aspergillus aculeatus affected in rhamnogalacturonan hydrolase expression. Curr Genet 30:439–446

    Article  PubMed  CAS  Google Scholar 

  • Taber WA (1985) Biology of Claviceps. In: Demain AL, Solomon NA (eds) Biology of industrial microorganisms. Benjamin Cummings, London, pp 449–486

    Google Scholar 

  • Taylor NG, Scheible W G, Cutler S, Somerville CR, lùrner SR (1999) The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11:769–779

    PubMed  CAS  Google Scholar 

  • Tenberge KB (1999) Biology and life strategy of the ergot fungi. In: Kren V, Cvak L (eds) Medicinal and aromatic plants — industrial profiles, vol6. Ergot — the genus Claviceps. Harwood, Amsterdam, pp 25–56

    Google Scholar 

  • Tenberge KB, Tudzynski P (1994) Early infection of rye ovaries by Claviceps purpurea is inter- and intracellular. BioEng Sondernr 10:22–22

    Google Scholar 

  • Tenberge KB, Homann V, Oeser B, Tudzynski P (1996) Structure and expression of two polygalacturonase genes of Claviceps purpurea oriented in tandem and cytological evidence for pectinolytic enzyme activity during infection of rye. Phytopathology 86:1084–1097

    Article  CAS  Google Scholar 

  • Tenberge KB, Stellamanns P, Plenz G, Robenek H (1998) Nonradioactive in situ hybridization for detection of hydrophobin mRNA in the phytopathogenic fungus Claviceps purpurea during infection of rye. Eur J Cell Biol 75:265–272

    Article  PubMed  CAS  Google Scholar 

  • Tenberge KB, Brockmann B, Tudzynski P (1999) Immunogold localization of an extracellular ß-1,3-glucanase of the ergot fungus Claviceps purpurea during infection of rye. Mycol Res 103:1103–1118

    Article  CAS  Google Scholar 

  • ten Have A, Mulder W, Visser J, van Kan JAL (1998) The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Mol Plant-Microbe Interact 11:1009–1016

    Article  PubMed  Google Scholar 

  • ten Have A, Breuil WO, Wubben JP, Visser J, van Kan JAL (2001) Botrytis cinerea endopolygalacturonase genes are differentially expressed in various plant tissues. Fung Genet Biol 33:97–105

    Article  CAS  Google Scholar 

  • Timell TE (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1:45–70

    Article  CAS  Google Scholar 

  • Tonukari NJ, Scott-Craig JS, Walton JD (2000) The Cochliobolus carbonum SNFI gene is required for cell wall degrading enzyme expression and virulence on maize. Plant Cell 12:237–247

    PubMed  CAS  Google Scholar 

  • Toubart P, Desiderio A, Salvi G, Cervone F, Daroda L, de Lorenzo G (1992) Cloning and characterization of the gene encoding the endopolygalacturonase-inhibiting protein (PGIP) of Phaseolus vulgaris L. Plant J 2: 367–373

    PubMed  CAS  Google Scholar 

  • Tudzynski P, Tenberge KB, Oeser B (1995) Claviceps purpurea. In: Kohmoto K, Singh US, Singh RP (eds) Pathogenesis and host specificity in plant diseases: histopathological, biochemical, genetic and molecular bases, volII. Eukaryotes. Pergamon, Elsevier Science, New York, pp 161–187

    Google Scholar 

  • Turgeon BG, Lu S-W (2000) Evolution of host specific virulence in Cochliobolus heterostrophus. In: Kronstadt JW (ed) Fungal pathology, Kluwer, Dordrecht, pp 93–126

    Google Scholar 

  • Urbanek H, Zalewska-Sobczak J (1984) Multiplicity of cell wall glycosidic hydrolases produced by apple infecting Botrytis cinerea. Phytopathol Z 110:261–271

    Article  CAS  Google Scholar 

  • Van der Cruyssen G, de Meester E, Kamoen O (1994) Expression of polygalacturonases of Botrytis cinerea in vitro and in vivo. Med Fac Landbouwwet Rijksuniv Gent 59:895–905

    CAS  Google Scholar 

  • Van der Vlugt-Bergmans CJB, Meeuwsen PJA, Voragen AGJ, van Ooyen AJJ (2000) Endo-xylogalacturonan hydrolase, a novel pectinolytic enzyme. Appl Environ Microbiol 66:36–41

    Article  PubMed  Google Scholar 

  • van Peij NNME, Gielkens MMC, de Vries RP, Visser J, de Graaf LH (1998) The transcriptional activator xlnR regulates both xylanolytic and endoglucanase gene expression in Aspergillus niger. Appl Environ Microbiol 64:3615–3619

    PubMed  Google Scholar 

  • Verhoeff K, Liem JI, Scheffer RJ, Surya I (1983) Cellulolytic activity of Botrytis cinerea in vitro and in vivo. Phytopathol Z 106:97–103

    Article  CAS  Google Scholar 

  • Vincken J-P, York WS, Beldman G, Voragen AGJ (1997) Two general branching patterns of xyloglucan, XXXG and XXGG. Plant Physiol 114:9–13

    Article  PubMed  CAS  Google Scholar 

  • Walton JD (1994) Deconstructing the cell wall. Plant Physiol 104:1113–1118

    PubMed  CAS  Google Scholar 

  • Whitcombe AJ, O’Neill MA, Steffan W, Albersheim P, Darvill AG (1995) Structural characterization of the pectic polysaccharide rhamnogalacturonan II. Carbohydr Res 271:15–29

    Article  PubMed  CAS  Google Scholar 

  • Wilkie KCB (1979) The hemicelluloses of grasses and cereals. Adv Carbohydr Chem Biochem 36:215–264

    Article  CAS  Google Scholar 

  • Williamson B (1994) Latency and quiescence in survival and success of fungal plant pathogens. In: Blakeman JP, Williamson B (eds) Ecology of plant pathogens. CAB International, Oxford, pp 187–207

    Google Scholar 

  • Wubben JP, Mulder W, ten Have A, van Kan JAL, Visser J (1999) Cloning and partial characterization of the Botrytis cinerea endopolygalacturonase gene family. Appl Environ Microbiol 65:1596–1602

    PubMed  CAS  Google Scholar 

  • Wubben JP, ten Have A, van Kan JAL, Visser J (2000) Regulation of endopolygalacturonase gene expression in Botrytis cinerea by galacturonic acid ambient pH and carbon catabolite repression. Curr Genet 37:152–157

    Article  PubMed  CAS  Google Scholar 

  • Yakoby N, Kobiler I, Dinoor A, Prusky D (2000) pH regulation of pectate lyase secretion modulates the attack of Colletotrichum gloeosporioides on avocado fruits. Appl Environ Microbiol 66:1026–1030

    Article  PubMed  CAS  Google Scholar 

  • Yakoby N, Beno-Moualem D, Keen NT, Dinoor A, Pines O, Prusky D (2001) Colletotrichum gloeosporioides pelB is an important virulence factor in avocado fruitfungus interaction. Mol Plant-Microbe Interact 14: 988–995

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

ten Have, A., Tenberge, K.B., Benen, J.A.E., Tudzynski, P., Visser, J., van Kan, J.A.L. (2002). The Contribution of Cell Wall Degrading Enzymes to Pathogenesis of Fungal Plant Pathogens. In: Kempken, F. (eds) Agricultural Applications. The Mycota, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03059-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03059-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07650-3

  • Online ISBN: 978-3-662-03059-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics