Skip to main content

EMUS-Probes for Bulk Waves and Rayleigh Waves. Model for Sound Field and Efficiency Calculations

  • Conference paper
New Procedures in Nondestructive Testing

Abstract

A mathematical description for ultrasound transduction with EMATs in an electrically conductive, ferromagnetic half space has been used to calculate the acoustic field of bulk waves and Rayleigh waves generated by EMATs consisting of one or two current lines. Results for SV- and SH-waves are presented and compared to experimental directivity patterns. The mathematical formalism can be applied to calculate transfer impedances, radiation impedances or insertion losses when the values for the material parameters which are used in the theory have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Il’in,I.V.; Kharitonov, A.V.: Excitation of surface waves in ferromagnetic materials with a linear current. Izv. Leningr. Electrotekh. Inst. No. 233 (1978) 3–8.

    Google Scholar 

  2. Il’in, I.V.; Kharitonov, A.V.: Theory of the EMA method of detecting Rayleigh waves for ferromagnetic and ferrimagnetic materials. Sov. J. NDT 16 (1980) 549–554.

    Google Scholar 

  3. Thompson, R.B.: A model for the electromagnetic generation of ultrasonic guided waves in ferromagnetic metal poly-crystals. IEEE Trans. SU-25 (1978) 7–15.

    Google Scholar 

  4. Il’in, I.V.; Kharitonov, A.V.: Mathematical equations for the problem of ultrasound generation and reception by the EMA method. Izv. Leningr. Elektrotekh. Inst. No. 221 (1977) 3–10.

    Google Scholar 

  5. Shkarlet, Yu.M.: Fundamentals of the general theory of sound excitation by harmonic force fields. Sov. J. NDT 10 (1974) 312–319.

    Google Scholar 

  6. Felsen, L.B.; Marcuvitz, N.: Radiation and scattering of waves. Englewood Cliffs, N.J.: Prentice-Hall 1973

    Google Scholar 

  7. Heelan, P.A.: On the theory of head waves. Geophysics 18 (1953) 871–893.

    Article  MathSciNet  Google Scholar 

  8. Mohr, W.; Repplinger, W.: Contactless EMA-excitation of ultrasonic bulk waves II. Materialprüf. 20 (1978) 221–225.

    Google Scholar 

  9. Auld, B.A.: Acoustic fields and waves in solids. Vol. I. New York, London, Sydney, Toronto: Wiley 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wilbrand, A. (1983). EMUS-Probes for Bulk Waves and Rayleigh Waves. Model for Sound Field and Efficiency Calculations. In: Höller, P. (eds) New Procedures in Nondestructive Testing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02363-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02363-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-02365-5

  • Online ISBN: 978-3-662-02363-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics