Skip to main content

Bestandserfassung mithilfe von Computer Vision Methoden

  • Chapter
  • First Online:
Künstliche Intelligenz im Bauwesen

Zusammenfassung

In diesem Kapitel werden verschiedene Ansätze für die Bestandserfassung mithilfe von ComputerVision (CV) Methoden dargestellt. Verschiedene Subdomänen von CV, wie beispielsweise semantische oder Instanz-Segmentierung, unterstützen bei der automatischen Anreicherung von semantischen Informationen basierend auf verschiedenen Eingangsdaten. Im ersten Anwendungsfall werden 2D-Zeichnung als Datenquelle verwendet, um geometrische As-Designed-Modelle zu rekonstruieren. Als zweite wichtige Datenquelle werden im zweiten Anwendungsfall räumlich-visuelle Bestandsaufnahmen (Punktwolken und Bilder) betrachtet und deren semantische Extraktionsmethoden vorgestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • AASHTO (2018): Manual for Bridge Evaluation.

    Google Scholar 

  • AASHTO (2020): LRFD Bridge Design Specifications (9th Edition).

    Google Scholar 

  • Barducci, Alessio; Marinai, Simone (2012): Object recognition in floor plans by graphs of white connected components. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), S. 298–301.

    Google Scholar 

  • Borrmann, André; König, Markus; Koch, Christian; Beetz, Jakob (Hg.) (2021): Building Information Modeling. Technologische grundlagen und industrielle Praxis: Springer Vieweg.

    Google Scholar 

  • Braun, Alex; Tuttas, Sebastian; Borrmann, André; Stilla, Uwe (2020): Improving progress monitoring by fusing point clouds, semantic data and computer vision. In: Automation in Construction 116, S. 103210. https://doi.org/10.1016/j.autcon.2020.103210.

  • Carrara, Andrea (2022): Multi-view fusion of technical drawings for a conceptual 3D reconstruction using deep-learning. In: Proceedings of 33. Forum Bauinformatik.

    Google Scholar 

  • Chen, Zhaiyu; Ledoux, Hugo; Khademi, Seyran; Nan, Liangliang (2022): Reconstructing compact building models from point clouds using deep implicit fields. In: ISPRS Journal of Photogrammetry and Remote Sensing 194, S. 58–73. https://doi.org/10.1016/j.isprsjprs.2022.09.017.

    Article  Google Scholar 

  • DIN (1999): DIN 1076:1999-11, Ingenieurbauwerke im Zuge von Straßen und Wegen_- Überwachung und Prüfung. DIN. Berlin.

    Google Scholar 

  • Jing, Yixiong; Sheil, Brian; Acikgoz, Sinan (2022): Segmentation of large-scale masonry arch bridge point clouds with a synthetic simulator and the BridgeNet neural network. In: Automation in Construction 142, S. 104459. https://doi.org/10.1016/j.autcon.2022.104459.

  • Kim, Byunghyun; Cho, Soojin (2020): Automated Multiple Concrete Damage Detection Using Instance Segmentation Deep Learning Model. In: Applied Sciences 10 (22), S. 8008. https://doi.org/10.3390/app10228008.

  • Kippers, R. G.; Koeva, M.; van Keulen, M.; Oude Elberink, S. J. (2021): AUTOMATIC 3D BUILDING MODEL GENERATION USING DEEP LEARNING METHODS BASED ON CITYJSON AND 2D FLOOR PLANS. In: Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLVI-4/W4–2021, S. 49–54. https://doi.org/10.5194/isprs-archives-XLVI-4-W4-2021-49-2021.

  • Lee, Jae Hyuk; Park, Jeong Jun; Yoon, Hyungchul (2020): Automatic Bridge Design Parameter Extraction for Scan-to-BIM. In: Applied Sciences 10 (20), S. 7346. https://doi.org/10.3390/app10207346.

  • Li, Lingxiao; Sung, Minhyuk; Dubrovina, Anastasia; Yi, Li; Guibas, Leonidas (2018): Supervised Fitting of Geometric Primitives to 3D Point Clouds. https://doi.org/10.48550/arXiv.1811.08988.

  • Li, Shengyuan; Zhao, Xuefeng; Zhou, Guangyi (2019): Automatic pixel‐level multiple damage detection of concrete structure using fully convolutional network. In: Computer-Aided Civil and Infrastructure Engineering 34 (7), S. 616–634. https://doi.org/10.1111/mice.12433.

  • Lu, Ruodan; Brilakis, Ioannis; Middleton, Campbell R. (2019): Detection of Structural Components in Point Clouds of Existing RC Bridges. In: Computer-Aided Civil and Infrastructure Engineering 34 (3), S. 191–212. https://doi.org/10.1111/mice.12407.

  • Mafipour, MS.; Vilgertshofer, S.; Borrmann, A. (2021): Deriving Digital Twin Models of Existing Bridges from Point Cloud Data Using Parametric Models and Metaheuristic Algorithms. In: Proc. of the EG-ICE Conference 2021. https://publications.cms.bgu.tum.de/2021_Mafipour_EG-ICE.pdf.

  • Nan, Liangliang; Wonka, Peter (2017): PolyFit: Polygonal Surface Reconstruction from Point Clouds. In: Proceedings of the IEEE International Conference on Computer Vision., S. 2372–2380.

    Google Scholar 

  • Ochmann, Sebastian; Vock, Richard; Wessel, Raoul; Klein, Reinhard (2016): Automatic reconstruction of parametric building models from indoor point clouds. In: Computers & Graphics 54, S. 94–103. https://doi.org/10.1016/j.cag.2015.07.008.

    Article  Google Scholar 

  • Pan, Sinno Jialin; Yang, Qiang (2010): A Survey on Transfer Learning. In: IEEE Trans. Knowl. Data Eng. 22 (10), S. 1345–1359. https://doi.org/10.1109/TKDE.2009.191.

  • Pan, Yuandong; Braun, Alexander; Brilakis, Ioannis; Borrmann, André (2022a): Enriching geometric digital twins of buildings with small objects by fusing laser scanning and AI-based image recognition. In: Automation in Construction 140, S. 104375. https://doi.org/10.1016/j.autcon.2022.104375.

  • Pan, Yuandong; Noichl, Florian; Braun, Alexander; Borrmann, André; Brilakis, Ioannis (2022b): Automatic creation and enrichment of 3D models for pipe systems by co-registration of laser-scanned point clouds and photos. In: Proceedings of the 2022 European Conference on Computing in Construction. 2022 European Conference on Computing in Construction, Jul. 24, 2022: University of Turin (Computing in Construction).

    Google Scholar 

  • Poux, Florent; Neuville, Romain; Nys, Gilles-Antoine; Billen, Roland (2018): 3D Point Cloud Semantic Modelling: Integrated Framework for Indoor Spaces and Furniture. In: Remote Sensing 10 (9), S. 1412. https://doi.org/10.3390/rs10091412.

  • Qi, Charles R.; Su, Hao; Mo, Kaichun; Guibas, Leonidas J. (2016): PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation.

    Google Scholar 

  • Qin, Guocheng; Zhou, Yin; Hu, Kaixin; Han, Daguang; Ying, Chunli (2021): Automated Reconstruction of Parametric BIM for Bridge Based on Terrestrial Laser Scanning Data. In: Advances in Civil Engineering 2021, S. 1–17. https://doi.org/10.1155/2021/8899323.

    Article  Google Scholar 

  • Schnabel, R.; Wahl, R.; Klein, R. (2007): Efficient RANSAC for Point-Cloud Shape Detection. In: Computer Graphics Forum 26 (2), S. 214–226. DOI: https://doi.org/10.1111/j.1467-8659.2007.01016.x.

  • Simonsen, Christoffer P.; Thiesson, Frederik M.; Philipsen, Mark P.; Moeslund, Thomas B. (2021): Generalizing Floor Plans Using Graph Neural Networks. In: 2021 IEEE International Conference on Image Processing (ICIP). 2021 IEEE International Conference on Image Processing (ICIP). Anchorage, AK, USA, 19.09.2021 - 22.09.2021: IEEE, S. 654–658.

    Google Scholar 

  • Surikov, Ilya Y.; Nakhatovich, Mikhail A.; Belyaev, Sergey Y.; Savchuk, Daniil A. (2020): Floor Plan Recognition and Vectorization Using Combination UNet, Faster-RCNN, Statistical Component Analysis and Ramer-Douglas-Peucker. In: Nirbhay Chaubey, Satyen Parikh und Kiran Amin (Hg.): Computing Science, Communication and Security, Bd. 1235. Singapore: Springer Singapore (Communications in Computer and Information Science), S. 16–28.

    Google Scholar 

  • Thomas, Hugues; Qi, Charles R.; Deschaud, Jean-Emmanuel; Marcotegui, Beatriz; Goulette, Francois; Guibas, Leonidas (2019): KPConv: Flexible and Deformable Convolution for Point Clouds. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South), 27.10.2019 - 02.11.2019: IEEE, S. 6410–6419.

    Google Scholar 

  • Truong-Hong, Linh; Lindenbergh, Roderik (2022): Automatically extracting surfaces of reinforced concrete bridges from terrestrial laser scanning point clouds. In: Automation in Construction 135, S. 104127. https://doi.org/10.1016/j.autcon.2021.104127.

  • Wang, Boyu; Wang, Qian; Cheng, Jack C.P.; Song, Changhao; Yin, Chao (2022): Vision-assisted BIM reconstruction from 3D LiDAR point clouds for MEP scenes. In: Automation in Construction 133, S. 103997. https://doi.org/10.1016/j.autcon.2021.103997.

  • Yan, Yujie; Hajjar, Jerome F. (2021): Automated extraction of structural elements in steel girder bridges from laser point clouds. In: Automation in Construction 125, S. 103582. https://doi.org/10.1016/j.autcon.2021.103582.

  • Zhang, Liqiang; Li, Zhuqiang; Li, Anjian; Liu, Fangyu (2018): Large-scale urban point cloud labeling and reconstruction. In: ISPRS Journal of Photogrammetry and Remote Sensing 138, S. 86–100. https://doi.org/10.1016/j.isprsjprs.2018.02.008.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasimir Forth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Collins, F. et al. (2024). Bestandserfassung mithilfe von Computer Vision Methoden. In: Haghsheno, S., Satzger, G., Lauble, S., Vössing, M. (eds) Künstliche Intelligenz im Bauwesen . Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-42796-2_18

Download citation

Publish with us

Policies and ethics