Skip to main content
  • 536 Accesses

Einleitung des Herausgebers

Prognosen helfen zu wissen, was in der Zukunft passieren wird. Ökonometrische Prognosen unterscheiden sich von den üblichen Prognosemodellen. Ökonometrische Prognosemodelle sind Systeme von Beziehungen zwischen Variablen wie BSP, Inflation, Wechselkursen usw. Dieses Kapitel befasst sich mit verschiedenen Arbeiten zur Schätzung eines Wirtschaftsmodells. Es behandelt einige Theorien sowie die reale Anwendung von ökonometrischen Prognosemodellen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Kauppi H, Saikkonen P (2008) Predicting U.S. recessions with dynamic binary response models. Rev Econ Stat 90(4):777–791

    Article  Google Scholar 

  2. Estrella A, Mishkin FS (1995) Predicting U.S. recessions: financial variables as leading indicators. Working paper 5379, National Bureau of Economic Research

    Google Scholar 

  3. Estrella A, Mishkin FS (1998) Predicting U.S. recessions: financial variables as leading indicators. Rev Econ Stat 80(1):45–61

    Article  Google Scholar 

  4. Dueker M (1997) Strengthening the case for the yield curve as a predictor of U.S. recessions. Rev Fed Reserve Bank St Louis 79(2):41–51

    Google Scholar 

  5. Park BU, Simar L, Zelenyuk V (2017) Nonparametric estimation of dynamic discrete choice models for time series data. Comput Stat Data Anal 108:97–120

    Article  Google Scholar 

  6. Fan J, Heckman NE, Wand MP (1995) Local polynomial kernel regression for generalized linear models and quasi-likelihood functions. J Am Stat Assoc 90:141–150

    Article  Google Scholar 

  7. Florio A (2004) The Asymmetric Effects of Monetary Policy. J Econ Surv 18:409–426

    Article  Google Scholar 

  8. Christensen JHE, Diebold FX, Rudebusch GD (2009) An arbitrage-free generalized Nelson-Siegel term structure model. Econ J 12:33–64

    Google Scholar 

  9. Christensen JHE, Diebold FX, Rudebusch GD (2011) The affine arbitrage-free class of Nelson-Siegel term structure models. J Econom 164:4–20

    Google Scholar 

  10. Ullah W, Matsuda Y, Tsukuda Y (2015) Generalized Nelson-Siegel term structure model: do the second slope and curvature factors improve the in-sample fit and out-of-sample forecast? J Appl Stat 42(4):876–904

    Google Scholar 

  11. Nelson CR, Siegel AF (1987) Parsimonious modeling of yield curves. J Bus 60:473–489

    Article  Google Scholar 

  12. Gribisch B, Hartkopf JP, Liesenfeld R (2020) Factor state-space models for high-dimensional realized covariance matrices of asset returns. J Empir Financ 55(1):1–20

    Article  Google Scholar 

  13. Philipov A, Glickman ME (2006) Factor stochastic volatility via Wishart processes. Econom Rev 25(2–3):311–334

    Article  Google Scholar 

  14. Golosnoy V, Gribisch B, Liesenfeld R (2012) The conditional autoregressive Wishart model for multivariate stock market volatility. J Econom 167(1):211–223

    Article  Google Scholar 

  15. Noureldin D, Shephard N, Sheppard K (2012) Multivariate high-frequency-based volatility (HEAVY) models. J Appl Econom 27(6):907–933

    Article  Google Scholar 

  16. Bauwens L, Braione M, Storti G (2016) Multiplicative conditional correlation models for realized covariance matrices. CORE working paper (2016/41)

    Google Scholar 

  17. Windle J, Carvalho M (2014) A tractable state-space model for symmetric positive-definite matrices. Bayesian Anal 9(4):759–792

    Article  Google Scholar 

  18. Moura GV, Noriller MR (2019) Maximum likelihood estimation of a TVP-VAR. Econ Lett 174:78–83

    Article  Google Scholar 

  19. Fan J, Furger A, Xiu D (2016) Incorporating global industrial classification standard into portfolio allocation: a simple factor-based large covariance matrix estimator with high-frequency data. J Bus Econ Stat 34(4):489–503

    Article  Google Scholar 

  20. Aït-Sahalia Y, Xiu D (2017) Using principal component analysis to estimate a high-dimensional factor model with high-frequency data. J Econom 201(2):384–399

    Article  Google Scholar 

  21. Brito D, Medeiros MC, Ribeiro R (2018) Forecasting large realized covariance matrices: The benefits of factor models and shrinkage. SSRN Working Paper

    Google Scholar 

  22. Sheppard K, Xu W (2019) Factor high-frequency based volatility (HEAVY) models. J Financ Econom 17(1):33–65

    Google Scholar 

  23. Morgan JP (1996) Riskmetrics, 4th edn. techreport, J. P. Morgan, New York

    Google Scholar 

  24. Lunde A, Shephard N, Sheppard K (2016) Econometric analysis of vast covariance matrices using composite realized kernels and their application to portfolio choice. J Bus Econ Stat 34(4):504–518

    Article  Google Scholar 

  25. Moura GV, Santos A, Ruiz E (2020) Comparing high-dimensional conditional covariance matrices: implications for portfolio selection. J Bank Finance 118:1–13

    Article  Google Scholar 

  26. Da Z, Engelberg J, Gao P (2011) In search of attention. J Finance 66:1461–1499

    Google Scholar 

  27. Bank M, Larch M, Peter G (2011) Google search volume and its influence on liquidity and returns of German stocks. Financ Mark Portf Manag 25:239

    Article  Google Scholar 

  28. Han L, Xu Y, Yin L (2018) Does investor attention matter? The attention-return relationship in FX markets. Econ Model 68:660–664

    Article  Google Scholar 

  29. Curme C, Preis T, Stanley HE, Moat HS (2014) Quantifying the semantics of search behavior before stock market moves. PNAS 111:11600–11605

    Article  Google Scholar 

  30. Wheelock D, Wohar M (2009) Can the term spread predict output growth and recessions? A survey of the literature. Fed Reserve Bank St. Louis Rev 91(5):419–440

    Google Scholar 

  31. Chinn M, Kucko K (2015) The predictive power of the yield curve across countries and time. Int Finance 18(2):129–156

    Article  Google Scholar 

  32. Steinbach MR (2014) Essays on dynamic macroeconomics. Ph.D. thesis, Stellenbosch University. http://hdl.handle.net/10019.1/86196. Accessed 9 July 2015

  33. Andrés J, López-Salido JD, Nelson E (2004) Tobin’s imperfect asset substitution in optimizing general equilibrium. J Money Credit Bank 36(4):665–690

    Article  Google Scholar 

  34. De Graeve F, Emiris M, Wouters R (2009) A structural decomposition of the US yield curve. J Monet Econ 56(4):545–559

    Article  Google Scholar 

  35. Doh T (2008) Estimating a structural macro finance model of the term structure. Federal Reserve Bank of Kansas City, Kansas

    Google Scholar 

  36. Amisano G, Tristani O (2008) A DSGE model of the term structure with regime shifts. European Central Bank, Germany

    Google Scholar 

  37. Zagaglia P (2013) Forecasting long-term interest rates with a general-equilibrium model of the Euro area: What role for liquidity services of bonds? Asia-Pac Financ Mark 20:383–430

    Article  Google Scholar 

  38. Balcilar M, Gupta R, Kotze K (2015) Forecasting macroeconomic data for an emerging market with a nonlinear DSGE model. Econ Model 44(1):215–228

    Article  Google Scholar 

  39. Balcilar M, Gupta R, Kotze K (2017) Forecasting South African macroeconomic variables with a Markov-switching small open-economy dynamic stochastic general equilibrium model. Empir Econ 53(1):117–135

    Article  Google Scholar 

  40. Cutler J (2001) Core inflation in the UK. MPC Unit Discussion Paper

    Google Scholar 

  41. Blinder A (1997) Measuring short-run inflation for central bankers: a commentary. Federal Reserve Bank of St. Louis Review, 5/6, 79(3): 157–60

    Google Scholar 

  42. Mankikar A, Paisley Jo (2002) What do measures of core inflation really tell us? Bank of England Quarterly Bulletin, winter: 373–83

    Google Scholar 

  43. Bryan M, Cecchetti S (1993) The consumer price index as a measure of inflation. NBER Working Paper No 4505

    Google Scholar 

  44. Fan Y, Feng W (2005) Measure of core inflation and the effectiveness of macro controls: an empirical analysis of China for 1995–2004. Manage World 5:6–13

    Google Scholar 

  45. Gadzinski G, Orlandi F (2004) Inflation persistence in the European Union, the Euro area, and the United States. European Central Bank. Working Paper No 414

    Google Scholar 

  46. Dias D, Marques C (2005) Using mean reversion as a measure of persistence. European Central Bank. Working Paper Series No 450

    Google Scholar 

  47. Bilke L, Stracca L (2007) A persistence-weighted measure of core inflation in the Euro area. Econ Model 24(6):1032–1047

    Article  Google Scholar 

  48. Zhang C (2011) Inflation persistence, inflation expectations, and monetary policy in China. Econ Model 28(1–2):622–629

    Article  Google Scholar 

  49. Taylor J (2000) Low inflation, pass-through, and the pricing power of firms. Eur Econ Rev 44(7):1389–1408

    Article  Google Scholar 

  50. Willis J (2003) Implications of structural changes in the US economy for pricing behavior and inflation dynamics. Econ Rev Federal Reserve Bank of Kansas City Q1:5–27

    Google Scholar 

  51. Perron P (1990) Testing for a unit root in a time series with a changing mean. J Bus Econ Stat 8(2):153–162

    Google Scholar 

  52. Mariano, R.S., and S. Ozmucur. 2015. High-mixed-frequency dynamic latent factor forecasting models for GDP in the Philippines. Estudios De Economia Aplicada. 33 (2):451–462.

    Google Scholar 

  53. Mariano, R.S., and S. Ozmucur. 2018. High-mixed-frequency forecasting models for GDP and inflation. In Global Economic Modeling – A Volume in Honor of Lawrence Klein, World Scientific Publishing Co, ed. P. Pauly, 2–29. Pte. Ltd.

    Google Scholar 

  54. Mariano, R.S., and S. Ozmucur. 2020b. High-mixed-frequency forecasting Methods in R -with Applications to Philippine GDP and Inflation. In Handbook of Statistics, Vol 42–Financial Macro and Micro Econometrics Using R, ed. C.R. Rao and H.D. Vinod, 185–227. Elsevier.

    Google Scholar 

  55. Mariano, R.S., and D. Preve. 2012. Statistical tests for multiple forecast comparison. Journal of Econometrics. 169 (1):123–130.

    Google Scholar 

  56. Mariano, R. S., and Ozmucur, S. (2020b). Predictive Performance of Mixed-Frequency Nowcasting and Forecasting Models (with Application to Philippine Inflation and GDP Growth). Penn Institute of Economic Research Working Paper. 20–029 PIER Paper Submission R8_16_20.pdf (upenn.edu).

    Google Scholar 

  57. Draghi M (2015) Introductory statement to the press conference (with Q&A). Frankfurt am Main

    Google Scholar 

  58. Ciccarelli M, Osbat C (2017) Low inflation in the euro area: causes and consequences. ECB occasional paper series 181

    Google Scholar 

  59. Benalal N, Diaz del Hoyo JL, Landau B, Roma M, Skudelny F (2004) To aggregate or not to aggregate? Euro area inflation forecasting. ECB working paper 374

    Google Scholar 

  60. Dées S, Güntner J (2017) Forecasting inflation across Euro area countries and sectors: a panel VAR approach. J Forecast 36(4):431–453

    Google Scholar 

  61. Giannone D, Lenza M, Reichlin L (2019) Money, credit, monetary policy, and the business cycle in the euro area: What has changed since the crisis? Int J Central Bank 15(5):137–173

    Google Scholar 

  62. Angeletos GM, Collard F, Dellas H (2020) Business cycle anatomy. Am Econ Rev 110:3030–3070

    Article  Google Scholar 

  63. Stock JH, Watson MW (2005b) An empirical comparison of methods for forecasting using many predictors. Manuscript, Princeton University. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.421.3470&rep=rep1&type=pdf. Accessed 2 Apr 2016

  64. Schumacher C (2007) Forecasting German GDP using alternative factor models based on large datasets. J Forecast 26(4):271–302

    Article  Google Scholar 

  65. Eickmeier S, Ziegler C (2008) How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach. J Forecast 27(3):237–265

    Google Scholar 

  66. D’Agostino A, Giannone D (2012) Comparing alternative predictors based on large-panel factor models. Oxf Bull Econ Stat 74(2):306–326

    Article  Google Scholar 

  67. Lam C, Yao Q (2012) Factor modeling for high-dimensional time series: inference for the number of factors. Ann Stat 40(2):694–726

    Article  Google Scholar 

  68. Moench E (2008) Forecasting the yield curve in a data-rich environment: a no-arbitrage factor-augmented VAR approach. J Econ 146(1):26–43

    Article  Google Scholar 

  69. Gupta R, Kabundi A (2010) The effect of monetary policy on house price inflation: a factor augmented vector autoregression (FAVAR) approach. J Econ Stud 37(6):616–626

    Article  Google Scholar 

  70. Zagaglia P (2010) Macroeconomic factors and oil futures prices: a data-rich model. Energy Econ 32(2):409–417

    Article  Google Scholar 

  71. Morana C (2013) Oil price dynamics, macro-finance interactions and the role of financial speculation. J Bank Finance 37(1):206–226

    Article  Google Scholar 

  72. Ledoit O, Wolf M (2003) Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. J Empir Financ 10:603–621

    Article  Google Scholar 

  73. Duangnate K (2015) Essays on the dynamics of and forecasting ability within the U.S.A energy sector. Ph.D. Dissertation, Texas A&M University, College Station, TX

    Google Scholar 

  74. Sadorsky P (2006) Modeling and forecasting petroleum futures volatility. Energy Econ 28(4):467–488

    Article  Google Scholar 

  75. Jin J, Kim J (2015) Forecasting natural gas prices using wavelets, time series, and artificial neural networks. PLoS ONE 10:e0142064. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0142064. Accessed 28 Sept 2016

  76. Mishra V, Smyth R (2016) Are natural gas spot and futures prices predictable? Econ Model 54:178–186

    Article  Google Scholar 

  77. Zhu B, Shi X, Chevallier J, Wang P, Wei YM (2016) An adaptive multiscale ensemble learning paradigm for nonstationary and nonlinear energy price time series forecasting. J Forecast 35:633–651

    Article  Google Scholar 

  78. Chinn MD, LeBlanc M, Coibion O (2005) The predictive content of energy futures: an update on petroleum, natural gas, heating oil and gasoline (No. w11033). National Bureau of Economic Research. https://www.nber.org/papers/w11033.pdf. Accessed 28 Nov 2016

  79. García-Martos C, Rodríguez J, Sánchez MJ (2013) Modelling and forecasting fossil fuels, CO2 and electricity prices and their volatilities. Appl Energy 101:363–375

    Article  Google Scholar 

  80. Ergen I, Rizvanoghlub I (2016) Asymmetric impacts of fundamentals on the natural gas futures volatility: an augmented GARCH approach. Energy Econ 56:64–74

    Article  Google Scholar 

  81. Batten A, Ciner C, Lucey BM (2017) The dynamic linkages between crude oil and natural gas markets. Energy Econ 62:155–170

    Article  Google Scholar 

  82. Hansen H, Johansen S (1999) Some tests for parameter constancy in cointegrated VAR-models. Econom J 2(2):306–333

    Article  Google Scholar 

  83. Dawid AP (1984) Statistical theory: the prequential approach. J R Stat Soc 147(2):278–292

    Google Scholar 

  84. Brier GW (1950) Verification of forecasts expressed in terms of probability. Mon Weather Rev 78:1–3

    Article  Google Scholar 

  85. NGI Daily Gas Index (2019) Various markets descriptions. https://www.naturalgasintel.com/data/data_products/daily?location_id=MCWONG&region_id=midcontinent. Accessed 17 March 2019

  86. Bloomberg LP (2015) North America natural gas spot prices. Retrieved May 15, 2015 from Bloomberg Professional Service

    Google Scholar 

  87. Farmer D, Siderowich J (1987) Predicting chaotic time series. Phys Rev Lett 59:845–848

    Article  Google Scholar 

  88. Abdel-Aal RE (2008) Univariate modeling and forecasting of monthly energy demand time series using abductive and neural networks. Comput Ind Eng 54:903–917

    Article  Google Scholar 

  89. Tularam GA, Saeed T (2016) Oil-price forecasting based on various univariate time-series models. Am J Oper Res 6:226–235

    Google Scholar 

  90. Diebold FX, Mariano RS (1995) Comparing predictive accuracy. J Bus Econ Stat 3:253–263

    Google Scholar 

  91. Elstner S, Grimme C, Haskamp U (2013) Das ifo Exportklima – ein Frühindikator für die deutsche Exportprognose. ifo Schnelld 66(4):36–43

    Google Scholar 

  92. Grimme C, Lehmann R (2019) The ifo Export Climate–a leading indicator to forecast German export growth. CESifo Forum 20(4):36–42

    Google Scholar 

  93. Frale C, Marcellino M, Mazzi GL, Proietti T (2010) Survey data as coincident or leading indicators. J Forecast 29(1–2):109–131

    Article  Google Scholar 

  94. Camacho M, Pérez-Quirós G, Poncela P (2018) Markov-switching dynamic factor models in real time. Int J Forecast 34(4):598–611

    Article  Google Scholar 

  95. Camacho M, Pérez-Quirós G (2010) Introducing the euro-sting: short-term indicator of euro area growth. J Appl Econom 25(4):663–694

    Article  Google Scholar 

  96. Kuzin V, Marcellino M, Schumacher C (2011) MIDAS vs. mixed-frequency VAR: nowcasting GDP in the euro area. Int J Forecast 27(2):529–542

    Article  Google Scholar 

  97. Armesto MT, Hernandez-Murillo R, Owyang MT, Piger J (2009) Measuring the information content of the beige book: a mixed data sampling approach. J Money Credit Bank 41(1):35–55

    Article  Google Scholar 

  98. Clements MP, Galvão AB (2008) Macroeconomic forecasting with mixed-frequency data: forecasting output growth in the United States. J Bus Econ Stat 26(4):546–554

    Article  Google Scholar 

  99. Clements MP, Galvão AB (2009) Forecasting US output growth using leading indicators: an appraisal using MIDAS models. J Appl Econ 24(7):1187–1206

    Article  Google Scholar 

  100. Galvão AB (2013) Changes in predictive ability with mixed frequency data. Int J Forecast 29(3):395–410

    Article  Google Scholar 

  101. Tay AS (2007) Financial variables as predictors of real output growth. Singapore Management University, School of Economics Working Papers (No:7–2007)

    Google Scholar 

  102. Schumacher C, Breitung J (2008) Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data. Int J Forecast 24(3):386–398

    Article  Google Scholar 

  103. Ghysels E, Wright JH (2009) Forecasting professional forecasters. J Bus Econ Stat 27(4):504–516

    Article  Google Scholar 

  104. Hamilton JD (2008) Daily monetary policy shocks and new home sales. J Monet Econ 55(7):1171–1190

    Article  Google Scholar 

  105. Monteforte L, Moretti G (2013) Real-time forecasts of inflation: the role of financial variables. J Forecast 32(1):51–61

    Article  Google Scholar 

  106. Andreou E, Ghysels E, Kourtellos A (2013) Should macroeconomic forecasters use daily financial data and how? J Bus Econ Stat 31(2):240–251

    Article  Google Scholar 

  107. Stock JH, Watson MW (2003) Forecasting output and inflation: the role of asset prices. J Econ Lit 41:788–829

    Article  Google Scholar 

  108. Rodriguez-Palenzuela D, Dees S (eds) (2016) The saving and investment task force. Savings and investment behaviour in the euro area. ECB occasional paper series no. 167

    Google Scholar 

  109. Guérin P, Marcellino M (2013) Markov-switching MIDAS models. J Bus Econ Stat 31(1):45–56

    Article  Google Scholar 

  110. Hansen BE (1996) Inference when a nuisance parameter is not identified under the null hypothesis. Econometrica 64:413–430

    Article  Google Scholar 

  111. Hansen BE (1999) Threshold effects in non-dynamic panels: estimation, testing, and inference. J Econom 93(2):345–368

    Article  Google Scholar 

  112. Hansen BE (2000) Sample splitting and threshold estimation. Econometrica 68(3):575–603

    Article  Google Scholar 

  113. Hansen BE (2017) Regression kink with an unknown threshold. J Bus Econ Stat 35(2):228–240

    Article  Google Scholar 

  114. Seo, B. (2007). Asymptotic distribution of the cointegrating vector estimator in error correction models with conditional heteroskedasticity. Journal of Econometrics, 137, 68–111.

    Article  Google Scholar 

  115. Herwartz, H., & Lütkepohl, H. (2011). Generalized least squares estimation for cointegration parameters under conditional heteroskedasticity. Journal of Time Series Analysis, 32(3), 281–291.

    Article  Google Scholar 

  116. Koop, G., León-González, R., & Strachan, R. W. (2011). Bayesian inference in the time varying cointegration model. Journal of Econometrics, 165, 210–220.

    Article  Google Scholar 

  117. Osiewalski, K., & Osiewalski, J. (2013). A long-run relationship between daily prices on two markets: The Bayesian VAR(2)-MSF-SBEKK model. Central European Journal of Economic Modelling and Econometrics, 5(1), 65–83.

    Google Scholar 

  118. Osiewalski, J., & Osiewalski, K. (2016). Hybrid MSV-MGARCH models general remarks and the GMSF-SBEKK specification. Central European Journal of Economic Modelling and Econometrics, 8(4), 241–271.

    Google Scholar 

  119. Cavaliere, G., Angelis, L. D., Rahbek, A., & Taylor, A. M. R. (2015). A comparison of sequential and information-based methods for determining the co-integration rank in heteroskedastic VAR models. Oxford Bulletin of Economics and Statistics, 77, 106–128.

    Article  Google Scholar 

  120. Pajor, A., & Wróblewska, J. (2017). VEC-MSF models in Bayesian analysis of short- and long-run relationships. Studies in Nonlinear Dynamics and Econometrics, 21(3), 1–22.

    Google Scholar 

  121. Cavaliere, G., Angelis, L. D., Rahbek, A., & Taylor, A. M. R. (2018). Determining the cointegration rank in heteroskedastic VAR models of unknown order. Econometric Theory, 34(2), 349–82.

    Article  Google Scholar 

  122. Clark, T. E. (2011). Real-time density forecasts from Bayesian vector autoregressions with stochastic volatility. Journal of Business and Economic Statistics, 29(3), 327–341.

    Article  Google Scholar 

  123. D’Agostino, A., Gambetti, L., & Giannone, D. (2013). Macroeconomic forecasting and structural change. Journal of Applied Econometrics, 28, 82–101.

    Article  Google Scholar 

  124. Rossi, B., & Skhposyan, T. (2014). Evaluating predictive densities of us output growth and inflation in a large macroeconomic data set. International Journal of Forecasting, 30, 662–682.

    Article  Google Scholar 

  125. Clark, T. E., & Ravazzolo, F. (2015). Macroeconomic forecasting performance under alternative specifications of time-varying volatility. Journal of Applied Econometrics, 30(4), 551–575.

    Article  Google Scholar 

  126. Berg, T. O. (2017). Forecast accuracy of a BVAR under alternative specifications of the zero lower bound. Studies in Nonlinear Dynamics and Econometrics, 21(2), 1–29.

    Google Scholar 

  127. Abbate, A., & Marcellino, M. (2018). Point, interval and density forecast of exchange rates with time varying parameter models. Journal of the Royal Statistical Society, 181(1), 155–179.

    Article  Google Scholar 

  128. Chan, J. C. C., & Eisenstat, E. (2018). Bayesian model comparison for time-varying parameter VARs with stochastic volatility. Journal of Applied Econometrics, 33(4), 509–532.

    Article  Google Scholar 

  129. Vardar, G., & Coskun, Y. (2018). Shock transmission and volatility spillover in stock and commodity markets: Evidence from advanced and emerging markets. Eurasian Economic Review, 8, 231–288.

    Article  Google Scholar 

  130. Huber, F., Koop, G., & Pfarrhofer, M. (2020). Bayesian inference in high-dimensional time-varying parameter models using integrated rotated Gaussian approximations. Available at: https://arxiv.org/abs/2002.10274 (Accessed on: 11 November, 2021)

  131. Kastner, G., & Huber, F. (2021). Sparse Bayesian vector autoregressions in huge dimensions. Journal of Forecasting, 39(7), 1142–1165.

    Article  Google Scholar 

  132. Anderson, R. G., Hoffman, D. L., & Rasche, R. H. (2002). A vector error-correction forecasting model of the U.S. Economy. Journal of Macroeconomics, 24(4), 569–598.

    Article  Google Scholar 

  133. Swanson, N. R. (2002). Comments on ‘A vector error-correction forecasting model of the US economy’. Journal of Macroeconomics, 24(4), 599–606.

    Article  Google Scholar 

  134. Kuo, C. Y. (2016). Does the vector error correction model perform better than others in forecasting stock price? An application of residual income valuation theory. Economic Modelling, 52(B), 772–789.

    Article  Google Scholar 

  135. Huber, F., & Zörner, T. O. (2019). Threshold cointegration in international exchange rates: A Bayesian approach. International Journal of Forecasting, 35(2), 458–473.

    Article  Google Scholar 

  136. Geweke, J. (2005). Contemporary Bayesian econometrics and statistics. Wiley series in probability and statistics. Wiley-Interscience [John Wiley and Sons].

    Google Scholar 

  137. Rosenblatt, M. (1952). Remarks on a multivariate transformation. Annals of Mathematical Statistics, 23(3), 470–472.

    Article  Google Scholar 

  138. Wróblewska, J., & Pajor, A. (2019). One-period joint forecasts of polish inflation, unemployment and interest rate using Bayesian VEC-MSF models. Central European Journal of Economic Modelling and Econometrics, 11(1), 23–45.

    Google Scholar 

  139. Gans N, Koole G, Mandelbaum A (2003) Telephone call centers: a tutorial and literature review. Manuf Serv Oper Manag 5(2):79–141

    Article  Google Scholar 

  140. Jung RC, Tremayne AR (2011) Useful models for time series of counts or simply wrong ones? AStA Adv Stat Anal 95(1):59–91

    Article  Google Scholar 

  141. Proietti T, Giovannelli A, Ricchi O, Citton A, Tegami C, Tinti C (2021) Nowcasting GDP and its components in a data-rich environment: the merits of the indirect approach. Int J Forecast (in Press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aher, V. (2023). Ausblick. In: Aher, V. (eds) Statistische und mathematische Methoden in der Wirtschaft. Springer Gabler, Wiesbaden. https://doi.org/10.1007/978-3-658-39275-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-39275-8_4

  • Published:

  • Publisher Name: Springer Gabler, Wiesbaden

  • Print ISBN: 978-3-658-39274-1

  • Online ISBN: 978-3-658-39275-8

  • eBook Packages: Business and Economics (German Language)

Publish with us

Policies and ethics