Skip to main content

Fahrerassistenzsysteme im Kontext altersgerechter HMI-Gestaltung

  • Chapter
  • First Online:
Altersgerechte Fahrerassistenzsysteme
  • 1695 Accesses

Zusammenfassung

Die zunehmend älter werdende Weltbevölkerung (DESA, UN, 2019; Haustein, Mischke, Schönfeeld, & Willand, 2016) und der damit verbundene Zuwachs an älteren Verkehrsteilnehmerinnen und –teilnehmern (Haustein, Mischke, Schönfeeld, & Willand, 2016) stellt die Automobilbranche bereits jetzt und umso mehr in der Zukunft vor neue Herausforderungen. Studien zeigen, dass der Abbau von sensorischen, körperlichen und kognitiven Fähigkeiten im Alter viele Besonderheiten in Hinblick auf die Teilnahme am Straßenverkehr (Davidse, 2006) und die Verwicklung in Verkehrsunfälle (Young, Koppel, & Charlton, 2017; Fornells, Parera, Ferrer, & Fiorentino, 2017) mit sich bringt. Zur Unterstützung dieser Gruppe empfiehlt sich die Verwendung von Fahrerassistenzsystemen, den sogenannten Advanced Driver Assistance Systems (ADAS; Davidse, 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Alm, H., & Nilsson, L. (October 1995). The effects of a mobile telephone task on driver behaviour in a car following situation. Accident Analysis & Prevention, 27(5), S. 707–715.

    Google Scholar 

  • Amira, B., Irato, G., Zanela, A., Brescia, A., & Turki, M. (November 2018). Congruent auditory display and confusion in sound localization: Case of elderly drivers. Transportation Research Part F: Traffic Psychology and Behaviour, 59, S. 524–534.

    Google Scholar 

  • Anstey, K. J., Wood, J., Lord, S., & Walker, J. G. (January 2005). Cognitive, sensory and physical factors enabling driving safety in older adults. (Elsevier, Hrsg.) Clinical psychology review, 25(1), S. 45–65.

    Google Scholar 

  • Bazilinskyy, P., Petermeijer, S. M., Petrovych, V., Dodou, D., & de Winter, J. C. (April 2018). Take-over requests in highly automated driving: A crowdsourcing survey on auditory, vibrotactile, and visual displays. Transportation research part F: traffic psychology and behaviour, 56, S. 82–98.

    Google Scholar 

  • Bentacur, J., Villa-Espinal, J., Osorio-Gómez, G., Cuéllar, S., & Suárez, D. (September 2018). Research topics and implementation trends on automotive head-up display systems. International Journal on Interactive Design and Manufacturing (IJIDeM), 12, S. 199–214.

    Google Scholar 

  • Chung, J. E., Wang, H., Fulk, J., & McLaughlin, M. (November 2010). Age differences in perceptions of online community participation among non-users: An extension of the Technology Acceptance Model. Computers in Human Behavior, 26(6), S. 1674-1684.

    Google Scholar 

  • Clark, J., Loftus, A., & Hammpond, G. (July 2011). Age-related changes in short-interval intracortical facilitation and dexterity. Neuroreport, 22(10), S. 499–503.

    Google Scholar 

  • Cohen, A. S. (2008). Wahrnehmung als Grundlage der Verkehrsorientierung bei nachlassender Sensorik während der Alterung. (T. M. GmBH, Hrsg.) Leistungsfähigkeit und Mobilität im Alter, S. 1837.

    Google Scholar 

  • Cole, K. J. (December 2006). Age-related directional bias of fingertip force. Experimental Brain Research, 175(2), S. 285–291.

    Google Scholar 

  • Crook, T. H., West, R. L., & Larrabee, G. J. (November 1993). The driving‐reaction time test: Assessing age declines in dual‐task performance. Developmental Neuropsychology, 9(1), S. 31–39.

    Google Scholar 

  • Crump, C., Cades, D., Lester, B., Reed, S., Barakat, B., Milan, L., & Young, D. (2016). Differing perceptions of advanced driver assistance systems (ADAS). Proc. of the Human Factors and Ergonomics Society Annual Meeting, 60, S. 861–865. Sage CA: Los Angeles, CA: SAGE Publications.

    Google Scholar 

  • Davidse, R. (2006). Older drivers and ADAS: which systems improve road safety? IATSS research, 30(1), S. 6 – 20.

    Article  Google Scholar 

  • DESA, UN. (2019). World Population Prospects 2019: Highlights. Retrieved February 25, 2020, from https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf

    Google Scholar 

  • Desrosiers, J., Hébert, R., Bravo, G., & Rochette, A. (1999). Age-related changes in upper extremity performance of elderly people: a longitudinal study. (Elsevier, Hrsg.) Experimental gerontology, 34, S. 393–405.

    Google Scholar 

  • Desrosiers, J., Hérbert, R., Bravo, G., & Dutil, É. (1995). Upper-extremity motor co-ordination of healthy elderly people. Age and Ageing, 24(2), S. 108–112.

    Article  Google Scholar 

  • Deutscher Verkehrssicherheitsrat e.V. (2006). Fahrerassistenzsysteme – Innovationen im Dienste der Sicherheit. Bonn, Deutschland.

    Google Scholar 

  • DIN Deutsches Institut für Normierung e. V. (2009). DIN EN ISO 9241-302 Ergonomie der Mensch-System-Interaktion – Teil 302: Terminologie für elektronische optische Anzeigen (ISO 9241-302:2009-06).

    Google Scholar 

  • DIN Deutsches Institut für Normierung e. V. (2012). DIN EN ISO 9241-303 Ergonomie der Mensch-System-Interaktion – Teil 303: Anforderungen an elektronische optische Anzeigen (ISO 9241-303:2012-303).

    Google Scholar 

  • Eby, D. W., Molnar, L. J., Zhang, L., Louis, R. M., Zanier, N., Kostyniuk, L. P., & Stanciu, S. (2016). Use, perceptions, and benefits of automotive technologies among aging drivers. Injury epidemiology, 3(1), S. 28.

    Article  Google Scholar 

  • Fornells, A., Parera, N., Ferrer, A., & Fiorentino, A. (2017). Senior Drivers, Bicyclists and Pedestrian Behavior Related with Traffic Accidents and Injuries. SAE Technical Paper 2017-01-1397, S. 11.

    Google Scholar 

  • Frauenberger, C., & Stockman, T. (November 2009). Auditory display design—an investigation of a design pattern approach. (Elsevier, Hrsg.) International Journal of Human-Computer Studies, 679(11), S. 907–922.

    Google Scholar 

  • Freund, B., Gravenstein, S., Ferris, R., Burke, B. L., & Shaheen, E. (March 2005). Drawing clocks and driving cars. Journal of General Internal Medicine, 20(3), S. 240–244.

    Google Scholar 

  • Haegerstrom-Portnoy, G., Schneck, M. E., & Brabyn, J. A. (April 1999). Seeing into old age: vision function beyond acuity. Optometry and Vision Science, 76(3), S. 141–158.

    Google Scholar 

  • Harvey, C., Stanton, N. A., Pickering, C. A., McDonald, M., & Zheng, P. (2011). Context of use as a factor in determining the usability of in-vehicle devices. Theoretical issues in ergonomics science, 12(4), S. 318–338.

    Article  Google Scholar 

  • Haustein, T., Mischke, J., Schönfeeld, F., & Willand, I. (Juli 2016). Ältere Menschen in Deutschland und der EU. Statistisches Bundesamt. Abgerufen am 20. 01 2020 von https://www.bmfsfj.de/blob/93214/95d5fc19e3791f90f8d582d61b13a95e/aeltere-menschen-deutschland-eu-data.pdf

  • Hughes, V. A., Frontera, W. R., Roubenoff, R., Evans, W. J., & Singh, M. A. (August 2002). Longitudinal changes in body composition in older men and women: role of body weight change and physical activity. The American journal of clinical nurtrition, 76(2), S. 472–481.

    Google Scholar 

  • Isler, R. B., Parsonson, B. S., & Hansson, G. J. (November 1997). Age related effects of restricted head movements on the useful field of view of drivers. Accident Analysis & Prevention, 29(6), S. 793–801.

    Google Scholar 

  • Jackson, G. R., Owsley, C., & McGwin Jr., G. (November 1999). Aging and dark adaptation. Vision research, S. 3975–3982.

    Google Scholar 

  • Kim, C., & Christiaans, H. (2012). ‚Soft‘ usability problems with consumer electronics: the interaction between user characteristics and usability. Journal of Design Research, 10(3), S. 223–238.

    Article  Google Scholar 

  • Kim, M. H., & Son, J. (April 2011). On-road assessment of in-vehicle driving workload for older drivers: Design guidelines for intelligent vehicles. International Journal of Automotive Technology, 12(2), S. 265–272.

    Google Scholar 

  • Knapp, A., Neumann, M., Brockmann, M., Walz, R., & Winkle, T. (August 2009). Code of Practice for the Design and Evaluation of ADAS. Preventive and Active Safety Applications, eSafety for road and air transport, European Commission Project, Brüssel.

    Google Scholar 

  • Kok, A. (2000). Age-related changes in involuntary and voluntary attention as reflected in components of the event-related potential (ERP). Biological Psychology, 54(1–3), S. 107–143.

    Article  Google Scholar 

  • Kupschick, S., Bürgelen, J., Jürgensohn, T., & Protzak, J. (2019). Erhöhung der Verkehrssicherheit älterer Kraftfahrer durch Verbesserung ihrer visuellen Aufmerksamkeit mittels “Sehfeldassistent”. (B. f. (BASt), Hrsg.) Berichte der Bundesanstalt für Straßenwesen. Unterreihe Fahrzeugtechnik, 127.

    Google Scholar 

  • Langford, J., & Koppel, S. (2006). Epidemiology of older driver crashes – identifying older driver risk factors and exposure patterns. Transportation Research Part F: Traffic Psychology and Behaviour, 9(5), S. 309–321.

    Article  Google Scholar 

  • Lee, C., & Coughlin, J. F. (June 2015). PERSPECTIVE: Older adults‘ adoption of technology: an integrated approach to identifying determinants and barriers. Journal of Product Innovation Management, 32(5), S. 747–759.

    Google Scholar 

  • Muller, C., & Weinberg, G. (January 2011). Multimodal input in the car, today and tomorrow. IEEE MultiMedia, 18(1), S. 98–103.

    Google Scholar 

  • Mynatt, E. D., & Rogers, W. A. (December 2001). Developing technology to support the functional independence of older adults. Ageing International, 27(1), S. 24–41.

    Google Scholar 

  • Nagesharo, S., Tseng, E., & Filev, D. (October 6–9 2019). Autonomous Highway Driving using Deep Reinforment Learning. In IEEE (Hrsg.), 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), (S. 2326-2331). Bari, Italy. Von arxiv.org abgerufen

    Google Scholar 

  • Niemelä-Nyrhinen, J. (August 2007). Baby boom consumers and technology: shooting down stereotypes. Journal of Consumer Marketing, 24(5), S. 305–312.

    Google Scholar 

  • Poschadel, S., Falkenstein, M., Rinkenauer, G., Mendzheritskiy, G., Fimm, B., Worringer, B., . . . Rudinger, G. (2012). Verkehrssicherheitsrelevante Leistungspotenziale, Defizite und Kompensationsmöglichkeiten äterer Autofahrer. Bremerhaven: Wirtschaftsverlag NW: Berichte der Bundesanstalt für Straßenwesen.

    Google Scholar 

  • Rakontonitainy, A., & Stainhardt, D. (September 21–22 2009b). In-vehicle technology functional requiremnets for older drivers. In A. Schmidt, A. K. Dey, T. Seder, & O. Juhlin (Hrsg.), Proceedings of the 1st international conference on automotive user interfaces and interactive vehicular applications (S. 27–33). Essen, Germany: ACM.

    Google Scholar 

  • Ramrattan, R. S., Wollfs, R. C., Panda-Jonas, S., Jonas, J. B., Bakker, D., Pols, H. A., . . . de Jong, P. (2001). Prevalence and causes of visual field loss in the elderly and associations with impairment in daily functioning: the Rotterdam Study. Archives of Ophthalmology, 119(12), S. 1788-1794.

    Article  Google Scholar 

  • Raw, R. K., Kountouriotis, G. K., Mon-Williams, M., & Wilkie, R. M. (June 2012). Movement control in older adults: does old age mean middle of the road? Journal of experimental psychology: human perception and performance, 38(3), S. 735.

    Google Scholar 

  • Rogers, W. A., & Fisk, A. D. (September 2010). Toward a psychological science of advanced technology design for older adults. Journals of Gerontology Series B: Psychological Science and Social Sciences, 65(6), S. 645–653.

    Google Scholar 

  • Salvucci, D. D. (July 2002). Modeling driver distraction from cognitive tasks. Proceedings of the Annual Meeting of the Cognitive Science Society, 24.

    Google Scholar 

  • Shinar, D., & Schieber, F. (October 1991). Visual requirements for safety and mobility of older drivers. Human factors, 33(5), S. 507–519.

    Google Scholar 

  • Shinohara, M. L., Kang, N., Zatsiorsky, V. M., & Latash, M. L. (January 2003). Effects of age and gender on finger coordination in MVC and submaximal force-matching tasks. Journal of applied physiology, 94(1), S. 259–270.

    Google Scholar 

  • Sixsmith, A., & Sixsmith, J. (February 2000). Smart care technologies: meeting whose needs? Journal of Telemedicine and Telecare, 6(1), S. 190–192.

    Google Scholar 

  • Spencer, W. D., & Naftali, R. (1995). Differential effects of aging on memory for content and context: a meta-analysis. Psychology and aging, 10(4), S. 527–539.

    Article  Google Scholar 

  • Strand, N., Stave, C., & Ihlström, J. (2018, September). A case-study on drivers‘ mental model of partial driving automation. 25th ITS World Congress, (S. 17–21). Copenhagen, Denmark.

    Google Scholar 

  • Strayer, D. L., & Drews, F. A. (2007). Multitasking in the Automobile. In Attention: From Theory To Practice (S. 121–133).

    Google Scholar 

  • Trübswetter, N. M. (2015). Akzeptanzkriterien und Nutzungsbarrieren älterer Autofahrer im Umgang mit Fahrerassistenzsystemen. Ph. D. Dissertation, TUM School of Education, TUM, München, Deutschland.

    Google Scholar 

  • Walston, J. D. (June 2012). Sarcopenia in older adults. Current opinion in rheumatology, 24(6), S. 623.

    Google Scholar 

  • Wilschut, E. S., Kroon, M., E. C., de Goede, M., Cremers, A., & Hoedemaeker, M. (2014, January). The older adult road user: recommendations for driver assistance. In I. i. Gladbach (Hrsg.), International interdisciplinary conference “Ageing and Safe Mobility” held at the Federal Highway Research Institute (BASt) in Bergisch Gladbach, (S. 1–10).

    Google Scholar 

  • Wood, J. M., Chaparro, A., & Carberry, T. (2007). Investigation of the interaction between visual impairment and multi-tasking on driving performance. In I. J. Faulks, M. Stevenson, J. Brown, A. Porter, & J. D. Irwin, Distracted Driving+ (S. 623–640). Sydney: NSW: Australasian College of Road Safety.

    Google Scholar 

  • Young, K. L., Koppel, S., & Charlton, J. L. (2017). Toward best practice in human machine interface design for older drivers: a review of current design guidelines. Elsevier Ltd., 106, S. 460–467.

    Google Scholar 

  • Ziefle, M., Pappachan, P., Jakobs, E.-M., & Wallentowitz, H. (2008). Visual and auditory interfaces of advanced driver assistant systems for older drivers. In M. K., K. J., Z. W., & K. A. (Hrsg.), Computers Helping People with Special Needs. ICCHP 2008. Lecture Notes in Computer Science, vol 5105. (S. 62–69). Berlin, Heidelberg: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Brockmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Der/die Herausgeber bzw. der/die Autor(en), exklusiv lizenziert durch Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brockmann, M., Schreiber, M., Wingen, S., Immoor, P. (2020). Fahrerassistenzsysteme im Kontext altersgerechter HMI-Gestaltung. In: Proff, H., Brand, M., Schramm, D. (eds) Altersgerechte Fahrerassistenzsysteme. Springer Gabler, Wiesbaden. https://doi.org/10.1007/978-3-658-30871-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-30871-1_4

  • Published:

  • Publisher Name: Springer Gabler, Wiesbaden

  • Print ISBN: 978-3-658-30870-4

  • Online ISBN: 978-3-658-30871-1

  • eBook Packages: Business and Economics (German Language)

Publish with us

Policies and ethics