Skip to main content

Efficient CFD methods for assessment of water management

  • Conference paper
  • First Online:
20. Internationales Stuttgarter Symposium

Part of the book series: Proceedings ((PROCEE))

  • 2064 Accesses

Zusammenfassung

An unobscured view from the vehicle during rainy weather conditions is essential for occupants’ safety and comfort. With the decrease in the time available for vehicle development and testing, it is becoming even more important to control and predict vehicle water management early in the development cycle to avoid undesired soiling effects. To do so, a transient external aerodynamics transient simulation coupled with a discrete particle phase is explored, where rain droplets away from the vehicle are modeled as Lagrangian particles and rain droplets that impact the vehicle are represented through a film model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. A. Pinelli, I. Z. Naqavi, U. Piomelli and J. Favier, “Immersed-boundary methods for general finite-difference and finite-volume Navier–Stokes solvers,” Journal of Computational Physics, vol. 229, pp. 9073-9091, 2010.

    Google Scholar 

  2. “Icon Technology And Process Consuting®,” [Online]. Available: https://www.iconcfd.com.

  3. T. Hagemeier, M. Hartmann and D. Thévenin, “Practice of vehicle soiling investigations: A review,” International Journal of Multiphase Flow - INT J MULTIPHASE FLOW, vol. 37, pp. 860-875, 10 2011.

    Google Scholar 

  4. M. Bannister, “Drag and Dirt Deposition Mechanisms of External Rear View Mirrors and Techniques Used for Optimisation,” in SAE Technical Paper, 2000.

    Google Scholar 

  5. A. Borg and R. Vevang, “On the Development of a Wind Tunnel method for the Prediction of Exterior Contamination,” in 5th MIRA International Conference on Vehicle Aerodynamics, UK, 2004.

    Google Scholar 

  6. T. Landwehr, T. Kuthada and J. Wiedemann, “Methodical Investigation of Vehicle Side Glass Soiling Phenomena,” in Progress in Vehicle Aerodynamics and Thermal Management, Cham, 2018.

    Google Scholar 

  7. N. Kruse and K.-H. Chen, “Exterior Water Management Using a Custom Euler-Lagrange Simulation Approach,” in SAE World Congress & Exhibition, 2007.

    Google Scholar 

  8. K. J. Karbon and S. E. Longman, “Automobile Exterior Water Flow Analysis Using CFD and Wind Tunnel Visualization,” in International Congress & Exposition, 1998.

    Google Scholar 

  9. H. Foucart and E. Blain, “Water-flow Simulation on Vehicle Panels by Taking into Account the Calculated Aerodynamic Field,” in 2005 SAE Commercial Vehicle Engineering Conference, 2005.

    Google Scholar 

  10. A. P. Gaylard, K. Kirwan and D. A. Lockerby, “Surface contamination of cars: A review,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 231, pp. 1160-1176, 2017.

    Google Scholar 

  11. A. P. Gaylard, M. Fagg, M. Bannister, B. Duncan, J. I. Gargoloff and J. Jilesen, Modelling A-Pillar Water Overflow: Developing CFD and Experimental Methods, 2012.

    Google Scholar 

  12. J. Jilesen, A. Gaylard, I. Spruss, T. Kuthada and J. Wiedemann, “Advances in Modelling A-Pillar Water Overflow,” in SAE 2015 World Congress & Exhibition, 2015.

    Google Scholar 

  13. J. Jilesen, A. Gaylard, T. Linden and A. Alajbegovic, “Update on A-Pillar Overflow Simulation,” in WCX World Congress Experience, 2018.

    Google Scholar 

  14. P. J. O’Rourke and A. A. Amsden, “A Particle Numerical Model for Wall Film Dynamics in Port-Injected Engines,” in 1996 SAE International Fall Fuels and Lubricants Meeting and Exhibition, 1996.

    Google Scholar 

  15. C. W. Hirt and B. D. Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries,” Journal of Computational Physics, vol. 39, pp. 201-225, 1981.

    Google Scholar 

  16. C. Bai and A. D. Gosman, “Mathematical Modelling of Wall Films Formed by Impinging Sprays,” in International Congress & Exposition, 1996.

    Google Scholar 

  17. H. Foucart, C. Habchi, J. F. Le Coz and T. Baritaud, “Development of a Three Dimensional Model of Wall Fuel Liquid Film for Internal Combustion Engines,” in International Congress & Exposition, 1998.

    Google Scholar 

  18. F. Campos, F. Mendonca, S. Weston and M. Islam, “Vehicle soiling simulation,” in 6th MIRA International Vehicle Aerodynamics Conference, 2006.

    Google Scholar 

  19. F. Campos, F. Mendonca, S. Weston and M. Islam, “CFD simulation of vehicle soiling,” in NAFEMS World Congress, 2007.

    Google Scholar 

  20. K. Meredith, J. Vries and Y. Xin, “A numerical model for partially-wetted flow of thin liquid films,” 2011.

    Google Scholar 

  21. K. Meredith, J. Vries, Y. Wang and Y. Xin, “A comprehensive model for simulating the interaction of water with solid surfaces in fire suppression environments,” Proceedings of the Combustion Institute, vol. 34, pp. 2719-2726, 2013.

    Google Scholar 

  22. G. Lombardi, A. Ercoli, M. Maganzi and G. Angeli, “Comparison of two Multiphase Procedures on a Commercial Vehicle in Rain Conditions,” International Journal of Automotive Technology, vol. 20, pp. 1123-1129, 01 12 2019.

    Google Scholar 

  23. F. Wittmeier, T. Kuthada, J. Filipsky and J. Cizek, “New MEMS Pressure Sensors for Transient Aerodynamic Measurements,” ATZ worldwide, vol. 120, pp. 38-41, 4 2018.

    Google Scholar 

  24. T. Han, S. Kaushik, K. Karbon, B. Leroy, K. Mooney, S. Petropoulou and J. Papper, Adjoint-Driven Aerodynamic Shape Optimization Based on a Combination of Steady State and Transient Flow Solutions, 2016.

    Google Scholar 

  25. R. Lietz, L. Larson, P. Bachant, J. Goldstein, R. Silveira, M. Shademan, P. Ireland and K. Mooney, “An Extensive Validation of an Open Source Based Solution for Automobile External Aerodynamics,” in WCX™ 17: SAE World Congress Experience, 2017.

    Google Scholar 

  26. J. M. Delhaye, “Jump conditions and entropy sources in two-phase systems. Local instant formulation,” International Journal of Multiphase Flow, vol. 1, pp. 395-409, 1974.

    Google Scholar 

  27. S. O’Brien and L. Schwartz, “Theory and modeling of thin film flows,” Encyclopedia of Surface and Colloid Science, pp. 5283-5297, 1 2002.

    Google Scholar 

  28. L. D. Landau and E. M. Lifshitz, Fluid Mechanics - Landau and Lifshitz: Course of Theoretical Physics, 2. Aufl. ed., Amsterdam: Elsevier, 2013.

    Google Scholar 

  29. J. Diez and L. Kondic, “Computing Three-Dimensional Thin Film Flows Including Contact Lines,” Journal of Computational Physics, vol. 183, pp. 274-306, 11 2002.

    Google Scholar 

  30. M. Trela, “A semi-theoretical model of stability of vertical falling liquid films,” Chemical Engineering Science, vol. 49, pp. 1007-1013, 1994.

    Google Scholar 

  31. D. E. Weidner and L. W. Schwartz, “Contact-line motion of shear-thinning liquids,” Physics of Fluids, vol. 6, pp. 3535-3538, 1994.

    Google Scholar 

  32. P.-G. De Gennes, “Wetting: statics and dynamics,” Reviews of modern physics, vol. 57, p. 827, 1985.

    Google Scholar 

  33. S. T. E. P. H. A. N. F. Kistler, “Hydrodynamics of wetting,” Wettability, vol. 6, pp. 311-430, 1993.

    Google Scholar 

  34. I. Spruß, Ein Beitrag zur Untersuchung der Kraftfahrzeugverschmutzung in Experiment und Simulation, Springer, 2016.

    Google Scholar 

  35. J. Jilesen, A. Gaylard and T. Linden, “Numerical Investigation of Wiper Drawback,” in SAE Technical Paper, 2019.

    Google Scholar 

  36. D. Chandar, B. Boppana and V. Kumar, “A Comparative Study of Different Overset Grid Solvers Between OpenFOAM, StarCCM+ and Ansys-Fluent,” 2018.

    Google Scholar 

  37. A. B. Liu, D. Mather and R. D. Reitz, “Modeling the Effects of Drop Drag and Breakup on Fuel Sprays,” in SAE Technical Paper, 1993.

    Google Scholar 

  38. M. Aoki, H. Iwai, K. Nakagawa, S. Ishii and K. Mizutani, “Measurements of rainfall velocity and raindrop size distribution using coherent Doppler lidar,” Journal of Atmospheric and Oceanic Technology, vol. 33, pp. 1949-1966, 2016.

    Google Scholar 

  39. R. Reitz, “Modeling atomization processes in high-pressure vaporizing sprays,” Atomisation Spray Technology, vol. 3, pp. 309-337, 1 1987.

    Google Scholar 

  40. A. D. Gosman and E. , “Aspects of Computer Simulation of Liquid-Fueled Combustors,” Journal of Energy, vol. 7, pp. 482-490, 1983.

    Google Scholar 

  41. P. J. O’Rourke, “Collective drop effects on vaporizing liquid sprays,” 11 1981.

    Google Scholar 

  42. T. Tivert, A. Borgy, J. Marimon and L. Davidson, “Wind-driven rivulet over an edge with break-up,” in Proceedings of the ICMF 2007, 6th International Conference on Multiphase Flow, 2007.

    Google Scholar 

  43. V. R. Shrimali, S. Rawat and R. K. Duggirala, “A Methodology to Simulate Water Stripping Phenomenon in Vehicle Soiling: An Eulerian to Lagrangian Approach,” Red, vol. 400, p. 24.

    Google Scholar 

  44. C. Crowe, J. Schwarzkopf, M. Sommerfeld and Y. Tsuji, Multiphase flows with droplets and particles, 2011.

    Google Scholar 

  45. A. P. Gaylard, J. Pitman, J. Jilesen, A. Gagliardi, B. Duncan, J. Wanderer and A. Konstantinov, “Insights into Rear Surface Contamination Using Simulation of Road Spray and Aerodynamics,” SAE Int. J. Passeng. Cars - Mech. Syst., vol. 7, pp. 673-681, 4 2014.

    Google Scholar 

  46. C. Zhang, M. Tanneberger, T. Kuthada, F. Wittmeier, J. Wiedemann and J. Nies, “Introduction of the AeroSUV-A New Generic SUV Model for Aerodynamic Research,” in SAE Technical Paper, 2019.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Novák, M., Devaradja, R., Papper, J., Černý, M. (2020). Efficient CFD methods for assessment of water management. In: Bargende, M., Reuss, HC., Wagner, A. (eds) 20. Internationales Stuttgarter Symposium . Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-29943-9_15

Download citation

Publish with us

Policies and ethics