Skip to main content

Strong Limit Theorems for Stochastic Processes and Orthogonality Conditions for Probability Measures

  • Chapter
Bernoulli 1713, Bayes 1763, Laplace 1813

Abstract

Let x (t), 0≦tT, be the Wiener process, that is, a real Gaussian stochastic process with

$${{E}_{x}}\left( t \right)=0,Ex\left( t \right)x\left( S \right)=R\left( t,s \right)=\min \left\{ t \right.,\left. s \right\}$$
(1)

and let N n for n = 1, 2,... be the sequence of increasing integers. Consider the following functional of x (t):

$${{U}_{n}}\left[ x\left( t \right) \right]={{\sum\limits_{k=1}^{{{N}_{n}}}{\left[ x\left( \frac{kT}{{{N}_{n}}} \right)-x\left( \frac{\left( k-1 \right)T}{{{N}_{n}}} \right) \right]}}^{2}}.$$
(2)

In 1940 Lévy [1] discovered the following interesting result concerning this functional.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lévy, P.: Le mouvement Brownien plan, Amer. J. Math. 62, 487 (1940).

    Google Scholar 

  2. Doob, J. L. Stochastic processes. New York: Wiley 1953.

    Google Scholar 

  3. Kozin, F.: A limit theorem for processes with stationary independent increments. Proc. Amer. Math. Soc. 8, 960 (1957).

    Article  MathSciNet  Google Scholar 

  4. Cameron, R. H., and W. T. Martin: The behavior of measure and measurability under the change of scale in Wiener space. Bull. Amer. Math. Soc. 53, 130 (1947).

    Article  MathSciNet  MATH  Google Scholar 

  5. Baxter, G.: A strong limit theorem for Gaussian processes. Proc. Amer. Math. Soc. 7, 522 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  6. Slepian, D.: Some comments on the detection of Gaussian signals in Gaussian noise. IRE Trans. on Inform. Theory. 4, 65 (1958).

    MathSciNet  MATH  Google Scholar 

  7. Varberg, D. E.: On equivalence of Gaussian measures. Pacif. J. Math. 11, 751 (1961).

    MathSciNet  MATH  Google Scholar 

  8. Gladyshev, E. G.: A new limit theorem for random processes with Gaussian increments. Teor. Veroyatnost. i Primenen. 6, 57 (1961).

    Google Scholar 

  9. Alekseev, V. G.: On perpendicularity conditions for Gaussian measures corresponding to two stochastic processes. Teor. Veroyatnost. i Primenen. 8, 304 (1963).

    Google Scholar 

  10. Yaglom, A. M.: Supplement to the Russian edition of: U. Grenander. Stochastic processes and statistical inference. Moscow: Publ. House of Foreign Literature 1961.

    Google Scholar 

  11. Girsanov, I. V.: On transforming a certain class of stochastic processes by absolutely continuous substitution of measures. Teor. Veroyatnost. i Primenen. 5, 314 (1960).

    MathSciNet  Google Scholar 

  12. Yaglom, A. M.: On the equivalence and perpendicularity of two Gaussian probability measures in function space, in the book Time series analysis (M. Rosenblatt, ed.) p. 327. New York: Wiley 1963.

    Google Scholar 

  13. Alekseev, V. G.: On the orthogonality and equivalence conditions for Gaussian measures in function space. Dokl. Akad. Nauk SSSR 147, 751 (1962).

    MathSciNet  Google Scholar 

  14. New theorems on almost-sure properties of realizations of Gaussian stochastic processes. Litovsky Matemat. Sbornik, Vilnius. 3, No. 2, 5 (1963).

    Google Scholar 

  15. Hajek, J.: On linear statistical problems in stochastic processes. Czech. Math. J. 12 (87), 404 (1962).

    Google Scholar 

  16. Rozanov, Yu. A.: On the equivalence of probability measures corresponding to Gaussian stationary processes. Teor. Veroyatnost. i Primenen. 8, 241 (1963).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jerzy Neyman Lucien M. Le Cam

Rights and permissions

Reprints and permissions

Copyright information

© 1965 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yaglom, A.M. (1965). Strong Limit Theorems for Stochastic Processes and Orthogonality Conditions for Probability Measures. In: Neyman, J., Le Cam, L.M. (eds) Bernoulli 1713, Bayes 1763, Laplace 1813. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-49749-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-49749-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49466-6

  • Online ISBN: 978-3-642-49749-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics