Skip to main content

Brownian Motion in Periodic Potentials

  • Chapter
The Fokker-Planck Equation

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 18))

  • 1481 Accesses

Abstract

In this chapter we apply some of the methods discussed in Chap. 10 for solving the Kramers equation for the problem of Brownian motion in a periodic potential. As discussed below, this problem arises in several fields of science, for instance in physics, chemical physics and communication theory. Restricting ourselves to the one-dimensional case, we deal with particles which are kicked around by the Langevin forces and move in a one-dimensional periodic potential (Fig. 11.1). Because of the excitation due to the Langevin forces the particles may leave the well and go either to the neighboring left or right well or they may move in the course of time to other wells which are further away. For long enough times the particles will thus diffuse in both directions of the x axis. As shown in Sect. 11.7 this diffusion can be described by a diffusion constant D, if we wait long enough. Thus the mean-square displacement is given by

$$\langle\lbrack x(t)-x(0)\rbrack^2\rangle=2 D\ t$$
((11.1))

for large times t. (The particles are then distributed over many potential wells.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. L. Stratonovich: Radiotekhnika; elektronika 3, No 4, 497 (1958)

    Google Scholar 

  2. R. L. Stratonovich: Topics in the Theory of Random Noise, Vol. II (Gordon and Breach, New York 1967) Chap. 9

    MATH  Google Scholar 

  3. A. J. Viterbi: Proc. IEEE 51, 1737 (1963)

    Article  Google Scholar 

  4. A. J. Viterbi: Principles of Coherent Communication (McGraw-Hill, New York 1966)

    Google Scholar 

  5. W. C. Lindsey: Synchronization Systems in Communication and Control (Prentice Hall, Englewood Cliffs, NJ 1972)

    Google Scholar 

  6. H. Haken, H. Sauermann, Ch. Schmid, H. D. Vollmer: Z. Physik 206, 369 (1967)

    Article  ADS  Google Scholar 

  7. Y. M. Ivanchenko, L. A. Zil’berman: Sov. Phys. JETP 28, 1272 (1969)

    ADS  Google Scholar 

  8. V. Ambegaokar, B. I. Halperin: Phys. Rev. Lett. 22, 1364 (1969)

    Article  ADS  Google Scholar 

  9. J. D. Cresser, W. H. Louisell, P. Meystre, W. Schleich, M. O. Scully: Phys. Rev. A25, 2214 (1982)

    MathSciNet  ADS  Google Scholar 

  10. J. D. Cresser, D. Hammonds, W. H. Louisell, P. Meystre, H. Risken: Phys. Rev. A25, 2226 (1982)

    MathSciNet  ADS  Google Scholar 

  11. P. Fulde, L. Pietronero, W. R. Schneider, S. Strässler: Phys. Rev. Lett. 35, 1776 (1975)

    Article  ADS  Google Scholar 

  12. W. Dieterich, I. Peschel, W. R. Schneider: Z. Physik B27, 177 (1977)

    ADS  Google Scholar 

  13. H. Risken, H. D. Vollmer: Z. Physik B31, 209 (1978)

    ADS  Google Scholar 

  14. T. Geisel: In Physics of Superionic Conductors, ed. by M. B. Salamon, Topic Current Phys., Vol. 15 (Springer, Berlin, Heidelberg, New York 1979) p. 201

    Google Scholar 

  15. W. Dieterich, P. Fulde, I. Peschel: Adv. Phys. 29, 527 (1980)

    Article  ADS  Google Scholar 

  16. A. K. Das, P. Schwendimann: Physica 89A, 605 (1977)

    ADS  Google Scholar 

  17. W. T. Coffey: Adv. Molecular Relaxation and Interaction Processes 17, 169 (1980)

    Article  Google Scholar 

  18. G. Wyllie: Phys. Reps. 61, 329 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  19. R. W. Gerling: Z. Physik B45, 39 (1981)

    ADS  Google Scholar 

  20. E. Praestgaard, N. G. van Kampen: Molec. Phys. 43, 33 (1981)

    Article  ADS  Google Scholar 

  21. V. I. Tikhonov: Avtomatika i Telemekhanika 21, 301 (1960)

    Google Scholar 

  22. P. A. Lee: J. Appl. Phys. 42, 325 (1971)

    Article  ADS  Google Scholar 

  23. K. Kurkijärvi, V. Ambegaokar: Phys. Lett. A31, 314 (1970)

    ADS  Google Scholar 

  24. T. Schneider, E. P. Stoll, R. Morf: Phys. Rev. B18, 1417 (1978)

    ADS  Google Scholar 

  25. P. Nozières, G. Iche: J. Physique 40, 225 (1979)

    Article  Google Scholar 

  26. E. Ben-Jacob, D. J. Bergman, B. J. Matkowsky, Z. Schuss: Phys. Rev. A26, 2805 (1982)

    ADS  Google Scholar 

  27. H. D. Vollmer, H. Risken: Z. Physik B37, 343 (1980)

    MathSciNet  ADS  Google Scholar 

  28. H. D. Vollmer, H. Risken: Z. Physik B52, 259 (1983)

    ADS  Google Scholar 

  29. H. Risken, H. D. Vollmer: Phys. Lett. 69A, 387 (1979)

    MathSciNet  ADS  Google Scholar 

  30. H. Risken, H. D. Vollmer: Z. Physik B35, 177 (1979)

    MathSciNet  ADS  Google Scholar 

  31. B. D. Josephson: Phys. Lett. 1, 251 (1962)

    Article  ADS  MATH  Google Scholar 

  32. L. Solymar: Superconductive Tunneling and Applications (Chapman and Hall, London 1972)

    Google Scholar 

  33. A. Barone, G. Paterno: Physics and Applications of the Josephson Effect (Wiley, New York 1982)

    Book  Google Scholar 

  34. P. Debye: Ber. dt. phys. Ges. 15, 777 (1913); translated in The Collected Papers of Peter J. W. Debye (Interscience, New York 1954)

    Google Scholar 

  35. A. Seeger: In Continuum Models of Discrete Systems, ed. by E. Kröner and K. H. Anthony (University of Waterloo Press, Waterloo 1980) p. 253

    Google Scholar 

  36. R. D. Parmentier: In Solitons in Action, ed. by K. Longren, A. Scott (Academic, New York 1978) p. 173

    Google Scholar 

  37. G. L. Lamb: Elements of Soliton Theory (Wiley, New York 1980)

    MATH  Google Scholar 

  38. R. K. Bullough, P. J. Caudrey (eds.): Solitons, Topics Current Phys., Vol. 17 (Springer, Berlin, Heidelberg, New York 1980)

    Google Scholar 

  39. G. Eilenberger: Solitons, Springer Ser. Solid-State Sci., Vol. 19 (Springer, Berlin, Heidelberg, New York 1981)

    Google Scholar 

  40. M. Büttiker, R. Landauer: In Nonlinear Phenomena at Phase Transitions and Instabilities, ed. by T. Riste (Plenum, New York 1982)

    Google Scholar 

  41. R. A. Guyer, M. D. Miller: Phys. Rev. A17, 1774 (1978)

    ADS  Google Scholar 

  42. H. Jorke: Modellrechnungen zur Brownschen Bewegung im periodischen Potential, Diplomthesis, Ulm (1981)

    Google Scholar 

  43. J. Mathews, R. L. Walker: Mathematical Methods of Physics (Benjamin, Menlo Park, CA 1973) p. 198ff.

    Google Scholar 

  44. L. Brillouin: Wave Propagation in Periodic Structures (McGraw-Hill, New York 1946)

    MATH  Google Scholar 

  45. A. H. Wilson: The Theory of Metals (University Press, Cambridge 1958)

    Google Scholar 

  46. R. Festa, E. G. d’Agliano: Physica 90A, 229 (1978)

    ADS  Google Scholar 

  47. D. L. Weaver: Physica 98A, 359 (1979)

    ADS  Google Scholar 

  48. R. A. Guyer: Phys. Rev. B21, 4484 (1980)

    MathSciNet  ADS  Google Scholar 

  49. H. Risken, K. Voigtlaender: unpublished

    Google Scholar 

  50. M. Abramowitz, I. A. Stegun: Handbook of Mathematical Functions (Dover, New York 1965)

    Google Scholar 

  51. D. E. McCumber: J. Appl. Phys. 39, 3113 (1968)

    Article  ADS  Google Scholar 

  52. C. M. Falco: Am. J. Phys. 44, 733 (1976)

    Article  ADS  Google Scholar 

  53. W. Dieterich, T. Geisel, I. Peschel: Z. Physik B29, 5 (1978)

    ADS  Google Scholar 

  54. T. Springer: Quasielastic Neutron Scattering for the Investigation of Diffusive Motion in Solids and Liquids. Springer Tracts Mod. Phys. 64 (Springer, Berlin, Heidelberg, New York 1972)

    Google Scholar 

  55. 11.55 J. L. Synge, B. A. Griffith: Principles of Mechanics (McGraw-Hill, New York 1959)

    Google Scholar 

  56. A. H. Nayfeh, D. T. Mook: Nonlinear Oscillations (Wiley, New York 1979) p. 55

    MATH  Google Scholar 

  57. H. Goldstein: Classical Mechanics (Addison-Wesley, Reading, Mass. 1950)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Risken, H. (1984). Brownian Motion in Periodic Potentials. In: The Fokker-Planck Equation. Springer Series in Synergetics, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-96807-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-96807-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-96809-9

  • Online ISBN: 978-3-642-96807-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics