Skip to main content

Function of Nerve Cells

  • Chapter
Human Physiology

Abstract

The nervous system - the subject of the first part of this book - is composed of nerve cells or neurons. The human brain contains about 25 billion such nerve cells; it, together with the spinal cord, constitutes the central nervous system (CNS). Only about 25 million nerve cells lie in the periphery or connect the periphery to the central nervous system. The nerve cells communicate with one another in a variety of ways by synapses, which far outnumber (by about a thousand-fold) the nerve cells. Synaptic contacts are also made with other types of cell, in particular receptors (information-receiving cells - e. g., in the sense organs) and effectors (e.g., the muscle cells). Because receptors and muscle cells have many functional features in common with the nerve cells, they will also be discussed in this part of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Textbooks and Handbooks

  1. Davson, H.: A Textbook of General Physiology, 4th Ed. London: Churchill 1970

    Google Scholar 

  2. Handbook of Physiology. I The Nervous System. Vol. 1 Cellular Biology of Neurons. Kandel, E.R. (Ed.) Baltimore: Williams & Wilkins 1977

    Google Scholar 

  3. Katz, B.: Nerve, Muscle and Synapse. New York: McGraw-Hill 1966

    Google Scholar 

  4. Kuffler, S.W., Nicholls, J.G.: From Neuron to Brain. Sunderland, Mass.: Sinauer Associates, Inc. 1976

    Google Scholar 

  5. Ruch, T.C., Patton, H.D.: Physiology and Biophysics. Philadelphia: Saunders 1966

    Google Scholar 

  6. Cooke, I., Lipkin, M.: Cellular Neurophysiology, a Source Book. New York: Holt, Rinehart and Winston 1972 (Collection of important original publications)

    Google Scholar 

Research Reports and Reviews

  1. Adrian, R. H.: The effect of internal and external potassium concentration on the membrane potential of frog muscle. J. Physiol. (Lond.) 133,631 (1956)

    CAS  Google Scholar 

  2. Adrian, R.H., Freygang, W.H.: The potassium and chloride conductance of frog muscle membrane. J. Physiol. (Lond.) 163,61 (1962)

    CAS  Google Scholar 

  3. Berthold, C. H.: Morphology of normal peripheral axons. In: Physiology and Pathobiology of Axons. Waxman, S.G. (Ed.) New York: Raven Press 1978

    Google Scholar 

  4. Cahalan, M.: Voltage clamp studies on the node of Ranvier. In: Physiology and Pathobiology of Axons. Waxman, S.G. (Ed.) New York: Raven Press 1978

    Google Scholar 

  5. Carpenter, D.O., Alving, B.O.: A contribution of an electrogenic Na+ pump to membrane potential in Aplysia neurons. J. gen. Physiol. 52, 1 (1968)

    Article  PubMed  CAS  Google Scholar 

  6. Dudel, J., Trautwein, W.: Elektrophysiologische Messungen zur Strophantinwirkung am Herzmuskel. Arch, exper. Path. Pharmakol. 232, 393(1958)

    Article  CAS  Google Scholar 

  7. Eccles, J.C.: The Physiology of Nerve Cells. Baltimore: Johns Hopkins Press 1957

    Google Scholar 

  8. Frankenhaeuser, B., Hodgkin, A. L.: The action of calcium on the electrical properties of squid axons. J. Physiol. (Lond.) 137, 218 (1957)

    CAS  Google Scholar 

  9. Frankenhaeuser, B., Huxley, A. F.: Action potential in myelinated nerve fibre of Xenopus laevis as computed on basis of voltage clamp data. J. Physiol. (Lond.) 171, 302 (1964)

    CAS  Google Scholar 

  10. Gasser, H.S., Grundfest, H.: Axon diameters in relation to the spike dimensions and the conduction velocity in mammalian A- fibers. Amer. J. Physiol. 127, 393 (1939)

    Google Scholar 

  11. Hille, B.: The permeability of the sodium channel to metal cations in myelinated nerve. J. gen. Physiol. 59, 637 (1972)

    Article  PubMed  CAS  Google Scholar 

  12. Hille, B.: Ionic channels in excitable membranes. Biophys. J. 22, 283–294(1978)

    Article  PubMed  CAS  Google Scholar 

  13. Hodgkin, A. L., Horowicz, P.: The effect of sudden changes in ionic concentrations on the membrane potential of single muscle fibres. J. Physiol. (Lond.) 153, 370 (1960)

    CAS  Google Scholar 

  14. Hodgkin, A. L., Huxley, A. F.: Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. (Lond.) 116, 449 (1952)

    CAS  Google Scholar 

  15. Hodgkin, A. L., Huxley, A. F.: The components of membrane conductance in the giant axon of Loligo. J. Physiol. (Lond.) 116, 473 (1952)

    CAS  Google Scholar 

  16. Hodgkin, A. L., Huxley, A. F.: The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. (Lond.) 116, 497 (1952)

    CAS  Google Scholar 

  17. Hodgkin, A.L., Huxley, A.F.: Quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500 (1952)

    CAS  Google Scholar 

  18. Hodgkin, A.L., Keynes, R.D.: Active transport of cations in giant axons from Sepia and Loligo. J. Physiol. (Lond.) 128, 28 (1955)

    CAS  Google Scholar 

  19. Hodgkin, A.L., Rushton, W.A.H.: The electrical constants of a crustacean nerve fibre. Proc. roy. Soc. B133, 444 (1946)

    Google Scholar 

  20. Huxley, A.F., Stámpfli, R.: Evidence for saltatory conduction in peripheral myelinated nerve fibres. J. Physiol. (Lond.) 108, 315 (1949)

    Google Scholar 

  21. Hoffman, J. F.: Molecular mechanism of active cation transport. In: Biophysics of Physiological and Pharmacological Actions (Shanes, Ed.) Washington: Amer. Ass. Adv. Sci. 1961

    Google Scholar 

  22. Katz, B.: Electrical properties of the muscle fibre membrane. Proc. roy. Soc. B135, 506 (1948)

    Google Scholar 

  23. Kuffler, S.W.: Mechanism of activation and motor control of stretch receptors in lobster and crayfish. J. Neurophysiol. 17, 558 (1954)

    PubMed  CAS  Google Scholar 

  24. Lloyd, D.P.C., Chang, H.T.: Afferent fibers in muscle nerves. J. Neurophysiol. 11,199 (1948)

    PubMed  CAS  Google Scholar 

  25. Lux, H.D.: Simultaneous measurement of extracellular potassium- ion activity and membrane currents in snail neurons. In: Ion and Enzyme Electrodes in Biology and Medicine. Kessler, R. (Ed.) Munich: Urban and Schwarzenberg 1976

    Google Scholar 

  26. Mullins, L. J., Awad, M.Z.: The control of the membrane potential of muscle fibers by the sodium pump. J. gen Physiol. 48,761 (1965)

    Article  PubMed  CAS  Google Scholar 

  27. Narahashi, T.: Mechanism of action of tetrodotoxin and saxitoxin on excitable membranes. Fed. Proc. 31, 1124 (1972)

    PubMed  CAS  Google Scholar 

  28. Narahashi, T., Moore, J.W.: Neuroactive agents and nerve membrane conductances. J. gen. Physiol. 51, 93 (1968)

    Article  PubMed  CAS  Google Scholar 

  29. Noble, D.: Applications of Hodgkin-Huxley equations to excitable tissues. Physiol. Rev. 46, 1 (1966)

    PubMed  CAS  Google Scholar 

  30. Ochs, S., Worth, R. M.: Axoplasmic transport in normal and pathological systems. In: Physiology and Pathology of Axons. Waxman, S. G. (Ed.) New York: Raven Press 1978

    Google Scholar 

  31. Rang, H. P., Ritchie, J. M.: Electrogenic sodium pump in mammalian non-myelinated nerve fibres and its activation by various external cations. J. Physiol. (Lond.) 196, 183 (1968)

    CAS  Google Scholar 

  32. Stámpfli, R., Hille, B.: Electrophysiology of frog peripheral myelinated nerve. In: Neurobiology of the Frog. Llinas, R., Precht, W. (Eds.) New York: Springer 1977

    Google Scholar 

  33. Terzuolo, C. A., Washizu, Y.: Relation between stimulus strength, generator potential and impulse frequency in stretch receptor of crustacea. J. Neurophysiol. 25, 56 (1962)

    PubMed  CAS  Google Scholar 

  34. Thomas, R. C.: Electrogenic sodium pump in nerve and muscle cells. Physiol. Rev. 52, 563–594 (1972)

    PubMed  CAS  Google Scholar 

  35. Trachtenberg, N.C., Pollen, D. A.: Neuroglia biophysical properties in physiologic function. Science 67, 1248 (1970)

    Article  Google Scholar 

  36. Ulbricht, W.: Ionic channels and gating currents in excitable membranes. Ann. Rev. Biophys. Bioeng. 6, 7–31 (1977)

    Article  CAS  Google Scholar 

  37. Watson, W. E.: Physiology of neuroglia. Physiol. Rev. 54, 245 (1974)

    PubMed  CAS  Google Scholar 

  38. Weidmann, S.: Effects of calcium ions and local anaesthetics on electrical properties of Purkinje fibres. J. Physiol. (Lond.) 129, 568 (1955)

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Dudel, J. (1983). Function of Nerve Cells. In: Schmidt, R.F., Thews, G. (eds) Human Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-96714-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-96714-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-96716-0

  • Online ISBN: 978-3-642-96714-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics