Skip to main content

Abstract

Amino-acids may (1) be utilised in protein synthesis either by being linked together through the synthesis of peptide bonds or, as now seems less likely, by acting as a nitrogen pool for protein synthesis by some alternative pathway (Street 1949, Wood 1953), (2) undergo degradation to organic acids which function as intermediates in the main sequence of respiratory reactions or are involved in the synthesis of carbohydrates and fats; (3) be involved in the synthesis of other organic nitrogenous compounds; this frequently involves amino-acid degradation despite the fact that the nitrogenous cell constituents ultimately synthesised may be of greater complexity and molecular weight than their amino-acid precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abelson, P. H., and H. J. Vogel: Amino-acid biosynthesis in Troulopsis utilis and Neurospora crassa. J. of Biol. Chem. 213, 355–364 (1955).

    CAS  Google Scholar 

  • Ackermann, D.: Ein Fäulnisversuch mit Arginin. Hoppe-Seylers Z, 56, 305–315 (1908).

    Google Scholar 

  • Über den bakteriellen Abbau des Histidins. Hoppe-Seylers Z. 65, 504–510 (1910).

    Google Scholar 

  • Über ein neues, auf bakteriellem Wege gewinnbares Aporrhegma. Hoppe-Seylers Z. 69, 273–281 (1911).

    Google Scholar 

  • Adelberg, E. A., and H. E. Umbarger: Isoleucine and valine metabolism in Escherichia coli. V. α-keto-isovaleric acid accumulation. J. of Biol. Chem. 205, 475–482 (1953).

    CAS  Google Scholar 

  • Adler, E., N. B. Das, H. v. Euler and U. Heyman: Biological dehydrogenation and synthesis of glutamic acid. C. r. Trav. Labor. Carlsberg, Ser. chim. 22, 15–25 (1938).

    CAS  Google Scholar 

  • Adler, E., G. Günther u. J. E. Everett: Über den enzymatischen Abbau und Aufbau der Glutaminsäure IV in Hefe. Hoppe-Seylers Z. 255, 27–35 (1938).

    CAS  Google Scholar 

  • Adler, E., V. Hellstrom, G. Gunther u. H. v. Euler: Über den enzymatischen Abbau und Aufbau der Glutaminsäure III in Bacterium coli. Hoppe-Seylers Z. 255, 14–26 (1938).

    CAS  Google Scholar 

  • Ahmed, K., and M. A. Karim: Biosynthesis of choline in the seedling of the chick pea (Cicer arietinum). Biochemic. J. 55, 817–820 (1953).

    Google Scholar 

  • Akamatsu, S., and T. Sekine: Hydrolysis of arginine by Streptococcus faecalis. J. of Biochem. (Tokyo) 38, 349–354 (1951).

    CAS  Google Scholar 

  • Akasi, S.: The action of arginase on octopine and its isomers. J. of Biochem. (Tokyo) 26, 129–135 (1937).

    Google Scholar 

  • Albaum, H. G., and P. P. Cohen: Transamination and protein synthesis in germinating oat seedlings. J. of Biol. Chem. 149, 19–27 (1943).

    CAS  Google Scholar 

  • Alexander, N., and D. M. Greenberg: Studies in the biosynthesis of serine. J. of Biol. Chem. 214, 821–837 (1955).

    CAS  Google Scholar 

  • Ames, B. N., H. K. Mitchell and M. B. Mitchell: Some new naturally occurring imidazoles related to the biosynthesis of histidine. J. Amer. Chem. Soc. 75, 1015–1018 (1953).

    CAS  Google Scholar 

  • Archibald, R. M.: Chemical characteristics and physiological roles of glutamine. Chem. Rev. 37, 161–208 (1945).

    PubMed  CAS  Google Scholar 

  • Arnow, P., J. J. Oleson and J. H. Williams: The effect of arginme in the nutrition of Chlorella vulgaris. Amer. J. Bot. 40, 100–104 (1953).

    CAS  Google Scholar 

  • Audus, L. J., and J. H. Quastel: Toxic effects of amino-acids and amines on seedling growth. Nature (Lond.) 160, 222–223 (1947).

    CAS  Google Scholar 

  • Bach, D.: Sur quelques conditions d’action de l’uréase de l’Aspergillus niger. C. r. Soc. Biol. Paris 100, 831–833 (1929).

    Google Scholar 

  • Baldwin, E.: Dynamic aspects of biochemistry. Cambridge 1953.

    Google Scholar 

  • Barger, G.: Isolation and synthesis of p-hydroxyphenylethylamine, an active principle of ergot soluble in water. J. Chem. Soc. Lond. 1909, 1123–1128.

    Google Scholar 

  • The simpler natural bases. London: Longmans, Green & Comp. 1914.

    Google Scholar 

  • Barrenscheen, H. K., u. J. Parry: The methylation of guanidineacetic acid to creatine by etiolated wheat seedlings. Biochem. Z. 310, 344–349 (1942).

    CAS  Google Scholar 

  • Barrenscheen, H. K., u. T. v. Valyi-Nagy: Die Methylierung durch pflanzliche und tierische Gewebe. L Mitt. Methionin als Methylierungsagens bei der Synthese des Kreatins und Betains durch etiolierte Weizenkeimlinge. Hoppe-Seylers Z. 277, 97–113 (1942).

    CAS  Google Scholar 

  • Beadle, G. W., H. K. Mitchell and J. F. Nyc: Kynurenine as an intermediate in the formation of nicotinic acid from tryptophane in Neurospora. Proc. Nat. Acad. Sci. U.S.A. 33, 155–158 (1947).

    CAS  Google Scholar 

  • Beevers, H., and W. O. James: The behaviour of secondary and tertiary amines in the presence of catechol and belladonna catechol oxidase. Biochemie. J. 43, 636–639 (1948).

    CAS  Google Scholar 

  • Behrens, M.: The distribution of lipase and arginase between nucleus and protoplasm of liver cells. Hoppe-Seylers Z. 258, 27–32 (1939).

    CAS  Google Scholar 

  • Bender, A. E., and H. A. Krebs: The oxidation of various synthetic α-amino acids by mammalian d-amino-acid oxidase, l-amino-acid oxidase of Cobra venom and the l- and d-amino-acid oxidase of Neurospora crassa. Biochemic. J. 46, 210–219 (1950).

    CAS  Google Scholar 

  • Bender, A. E., H. A. Krebs and N. H. Horowitz: Amino-acid oxidase of Neurospora crassa. Biochemic. J. 45, XXI–XXII (1949).

    Google Scholar 

  • Bennet-Clark, T. A., and N. P. Kefford: Chromatography of the growth substances in plant extracts. Nature (Lond.) 171, 645 (1953).

    CAS  Google Scholar 

  • Bentley, J. A., and S. Housley: Studies on plant growth hormones. I. Biological activities of 3-indolylacetaldehyde and 3-indolylacetonitrile. J. of Exper. Bot. 3, 393–405 (1952).

    CAS  Google Scholar 

  • Berg, A., S. Kari, M. Alfthan and A. I. Virtanen: Homoserine and α-aminoadipic acid in green plants. Acta chem. scand. (Copenh.) 8, 358 (1954).

    CAS  Google Scholar 

  • Berg, C. P.: The physiology of the d-amino acids. Physiologic. Rev. 33, 145 (1953).

    CAS  Google Scholar 

  • Berger, J., and G. S. Avery jr.: Dehydrogenases of the Avena coleoptile. Amer. J. Bot. 30, 290–297 (1943).

    CAS  Google Scholar 

  • Glutamic and isocitric acid dehydrogenases in the Avena coleoptile and effect of auxins on these enzymes. Amer. J. Bot. 31, 11–19 (1944).

    Google Scholar 

  • Bernhauer, K., u. F. Slanina: Zum Chemismus der durch Aspergillus niger bewirkten Säurebildungsvorgänge. X. Mitt. Über die Bildung von Oxalsäure aus Ameisensäure. Biochem. Z. 264, 109–112 (1943).

    Google Scholar 

  • Berthelot, A., et D. M. Bertrand: Recherches sur la flore intestinale. Isolement d’un microbe capale de produire de la β-imidazoléthylamine aux depens de l’histidine. C. r. Acad. Sci. Paris 154, 1643–1645 (1912).

    CAS  Google Scholar 

  • Sur quelques propriétés biochimiques du Bazillus aminophilus intestinalis. C. r. Acad. Sci. Paris 154, 1826–1831 (1912).

    Google Scholar 

  • Binkley, F.: On the nature of serine dehydrase and cysteine desulfurase. J. of Biol. Chem. 150, 261–262 (1943).

    CAS  Google Scholar 

  • Binkley, F., and C. K. Olson: Deamination of homoserine. J. of Biol. Chem. 185, 881–885 (1950).

    CAS  Google Scholar 

  • Blakeley, R. J.: The interconversion of serine and glycine: role of pteroylglutamic acid and other cofactors. Biochemic. J. 58, 448–462 (1954).

    Google Scholar 

  • Blanchard, M., D. E. Green, V. Nocito and S. Ratner: l-amino acid oxidase of animal tissue. J. of Biol. Chem. 155, 421–440 (1944).

    CAS  Google Scholar 

  • Isolation of l-amino acid oxidase. J. of Biol. Chem. 161, 583–597 (1945).

    Google Scholar 

  • Blass, J., O. Lecomte et M. Macheboeuf: Recherches sur les aminosaures libres de Vibrio Cholerae par microchromatographie. Bull. Soc. Chim. biol. Paris 33, 1552–1556 (1951).

    PubMed  CAS  Google Scholar 

  • Bokuchava, M. A.: Changes of different fractions of tanning substances in the tea leaf during growth and processing. Biokhimiya 11, 263–271 (1946).

    CAS  Google Scholar 

  • The rôle of polyphenoloxidases and peroxidases in the transformation of tea tannins. Biokhimiya 13, 173–178 (1948).

    Google Scholar 

  • Bonner, D.: Production of biochemical mutations in Penicillium. Amer. J. Bot. 33, 788 (1946a).

    CAS  Google Scholar 

  • Further studies of mutant strains of Neurospora requiring isoleucine and valine. J. of Biol. Chem. 166, 545–554 (1946b).

    Google Scholar 

  • The identification of a natural precursor of nicotinic acid. Proc. Nat. Acad. Sci. U.S.A. 34, 5–9 (1948).

    Google Scholar 

  • Bonner, D., E. L. Tatum and G. W. Beadle: The genetic control of biochemical reactions in Neurospora. A mutant strain requiring isoleucine and valine. Arch. of Biochem. 3, 71–91 (1943).

    CAS  Google Scholar 

  • Bonner, J.: The production of growth substance by Rhizopus suinus. Biol. Zbl. 52, 565 (1932).

    CAS  Google Scholar 

  • Limiting factors and growth inhibitors in the growth of the Avena coleoptile. Amer. J. Bot. 36, 323–332 (1949).

    Google Scholar 

  • Bonner, J., and S. G. Wildman: Enzymatic mechanisms in the respiration of spinach leaves. Arch. of Biochem. 10, 497–518 (1946).

    CAS  Google Scholar 

  • Borek, B. A., and H. Waelsch: The enzymatic degradation of histidine. J. of Biol. Chem. 205, 459–474 (1953).

    CAS  Google Scholar 

  • Borsook, H., C. L. Deasy, A. J. Haagen-Smit, G. Keighley and P. H. Lowy: α-aminoadipic acid: A product of lysine metabolism. J. of Biol. Chem. 173, 423–424 (1948).

    CAS  Google Scholar 

  • The degradation of l-lysine in guinea pig liver homogenate: Formation of alpha-amino-adipie acid. J. of Biol. Chem. 176, 1383–1393 (1948).

    Google Scholar 

  • The degradation of alpha-amino-adipic acid in guinea pig liver homogenate. J. of Biol. Chem. 176, 1395–1400 (1948).

    Google Scholar 

  • Bortuttau, H., u. H. Cappenberg: The active constituents of Shepherd’s Purse (Capsella bursa-pastoris). Arch. Pharm. 259, 33–52 (1921).

    Google Scholar 

  • Boswell, J. G.: Oxidation systems in the potato-tuber. Ann. of Bot. 9, 55–76 (1945).

    CAS  Google Scholar 

  • Bowden, K., and L. Marion: Biogenesis of alkaloids. IV. Formation of gramme from tryptophane in barley. Canad. J. Res. 29, 1037 (1951).

    CAS  Google Scholar 

  • Braunstein, A. E., and R. M. Azarkh: The mode of deamination of l-amino acids in surviving tissues. J. of Biol. Chem. 157, 421–422 (1945).

    Google Scholar 

  • Braunstein, A. E., and S. M. Bychkov: A cell-free enzymatic model of l-amino-acid dehydrogenase (l-deaminase). Nature (Lond.) 144, 751–752 (1939).

    Google Scholar 

  • Formation and breakdown of amino acids by intermolecular transfer of amino groups. XIV. A cell-free enzymic model of l-amino acid dehydrogenase (l-deaminase). Biokhimiya 5, 261–270 (1940).

    Google Scholar 

  • Braunstein, A. E., u. M. G. Kritzmann: Über den Ab- und Aufbau von Aminosäuren durch Umaminierung. I. Über den Umsatz der Gleichgewiehtsreaktion zwischen l(+)-Glutaminsäure und Brenztraubensäure bzw. l(+)-Alanin und α-Ketoglutarsäure. Enzymologia (Den Haag) 2, 129–146 (1937).

    Google Scholar 

  • Braunstein, A. E., i G. T. Vilenkina: The enzymic formation of glycine from serine threonine and other hydroxyamino acids in animal tissues (in Russian). Dokl. Akad. Nauk SSSR. 66, 243–246 (1949).

    Google Scholar 

  • Broquist, H. P., and E. E. Snell: Mechanism of histidine synthesis in lactic acid bacteria. Federat. Proc. 8, 188 (1949).

    Google Scholar 

  • Burton, K.: The l-amino-acid oxidase of Neurospora. Biochemic. J. 50, 258–268 (1951).

    CAS  Google Scholar 

  • Busch, G.: Die enzymatische Spaltung von l-β-Asparagin durch Bakterien. Biochem. Z. 312, 308–314 (1948).

    Google Scholar 

  • Byerrum, R. U., and R. E. Wing: The role of choline in some metabolic reactions of Nicotiana rustica, J. of Biol. Chem. 205, 637–642 (1953).

    CAS  Google Scholar 

  • Cameron, H. S., L. W. Holm and M. E. Meyer: Comparative metabolic studies on the genus Brucella. I. Evidence of a urea cycle from glutamic acid metabolism. J. Bacter. 64, 709–712 (1952).

    CAS  Google Scholar 

  • Cammarata, P. S., and P. P. Cohen: The scope of the transamination reaction in animal tissues. J. of Biol. Chem. 187, 439–452 (1950).

    CAS  Google Scholar 

  • Canellakis, E. S., and H. Tarver: Studies on protein synthesis in vitro. IV. Concerning the apparent uptake of methionine by particulate preparations from liver. Arch. of Biochem. a. Biophysics 42, 387–398 (1953).

    CAS  Google Scholar 

  • Cardon, B. P.: Amino-acid fermentations by anaerobic bacteria. Proc. Soc. Exper. Biol. a. Med. 51, 267 (1942).

    CAS  Google Scholar 

  • Cardon, B. P., and H. A. Barker: Amino-acid fermentations by Clostridium propionicum and Diplococcus glycinophilus. Arch. of Biochem. 12, 165 (1947).

    CAS  Google Scholar 

  • Cedrangolo, F., e G. Carandente: Aspartico- and glutamico-aminopherase in higher plants. Arch. di Sci. biol. 26, 369–383 (1940).

    CAS  Google Scholar 

  • Chapeville, F., et P. Fromageot: La formation de l’acide cysteinesulfinique á partir de la cystine chez le rat. Biochim. et Biophysica Acta 17, 257–276 (1955).

    Google Scholar 

  • Chargaff, E., and D. B. Sprinson: Mechanism of deamination of serine by Bacterium coli. J. of Biol. Chem. 148, 249 (1943).

    CAS  Google Scholar 

  • Chibnall, A. C.: Protein metabolism in the plant. New Haven 1939.

    Google Scholar 

  • Clark, I., and D. Rittenberg: The metabolic activity of the α-hydrogen atom of lysine. J. of Biol. Chem. 189, 521–528 (1951).

    CAS  Google Scholar 

  • Cohen, P. P.: Transaminases. In: The Enzymes, edit. J. B. Sumner and K. Myrbäck, Vol. 1, Pt. 2, p. 1040–1067. 1951.

    Google Scholar 

  • Cohen, P. P., and S. Grisolia: The role of carbamyl-l-glutamic acid in the enzymatic synthesis of citrulline from ornithine. J. of Biol. Chem. 182, 747–761 (1949).

    Google Scholar 

  • Cook, R. P., and B. Woolf: The deamination and synthesis of l-aspartic acid in the presence of bacteria. Biochemic. J. 22, 474–481 (1928).

    CAS  Google Scholar 

  • Crawfobd, A. C., and W. K. Watanabe: Parahydroxyphenylethylamine, a pressor compound in an American mistletoe. J. of Biol. Chem. 19, 303 (1914).

    Google Scholar 

  • The occurrence of p-hydroxyphenylethylamine in various mistletoes. J. of Biol. Chem. 24, 169–172 (1916).

    Google Scholar 

  • Cromwell, B. T.: The role of putrescine in the synthesis of hyoscyamine. Biochemic. J. 37, 722–726 (1943).

    CAS  Google Scholar 

  • The micro-estimation and origin of methylamine in Mercurialis perennis L. Biochemic. J. 45, 84–86 (1949).

    Google Scholar 

  • Dalgliesh, C. E.: Biological degradation of tryptophan. Quart. Rev. Chem. Soc. Lond. 5, 227–244 (1951).

    CAS  Google Scholar 

  • Dalgliesh, C. E., W. E. Knox and A. Neuberger: Intermediary metabolism of tryptophan. Nature (Lond.) 168, 20–22 (1951).

    CAS  Google Scholar 

  • Damodaran, M.: The isolation of asparagine from an enzymic digest of edestin. Biochemic. J. 26, 235–247 (1932).

    CAS  Google Scholar 

  • Damodaran, M., G. Jaaback and A. C. Chibnall: The isolation of glutamine from an enzymic digest of gliadin. Biochemic. J. 26, 1704–1713 (1932).

    CAS  Google Scholar 

  • Damodaran, M., and K. R. Nair: Glutamic acid dehydrogenase from germinating seeds. Biochemic. J. 32, 1064 to 1074 (1938).

    CAS  Google Scholar 

  • Damodaran, M., and K. G. A. Narayanan: A comparative study of arginase and canavanase. Biochemic. J. 34, 1449 (1940).

    CAS  Google Scholar 

  • Damodaran, M., R. Ramaswamy, T. R. Venkatesan, S. Mahadevan and K. Ramdas: Amide synthesis in plants. II. Amino-acid changes in germinating seedlings. Proc. Indian Acad. Sci., Sect, B 23, 86–99 (1946).

    Google Scholar 

  • Damodaran, M., and P. M. Sivaramakrishnan: New sources of urease for determination of urea. Biochemic. J. 31, 1041–1046 (1937).

    CAS  Google Scholar 

  • Damodaran, M., and S. S. Subramanian: Amide synthesis in plants. IV. Aspartase in germinating seedlings. Proc. Indian Acad. Sci., Sect. B 27, 47–53 (1948).

    Google Scholar 

  • Davis, B. D.: Nutritionally deficient bacterial mutants isolated by means of penicillin. Experientia (Basel) 6, 41–50 (1950).

    CAS  Google Scholar 

  • Studies on aromatic synthesis in Escherichia coli, I. Shikimic acid, an early intermediate. J. of Biol. Chem. 191, 315–325 (1951).

    Google Scholar 

  • Biosynthetie interrelations of lysine, diammopimelic acid and threonine in mutants of Escherichia coli. Nature (Lond.) 169, 534–536 (1952a).

    Google Scholar 

  • Aromatic biosynthesis. IV. Preferential conversion in incompletely blocked mutants of a common preeurso of several metabolites. J. Bacter. 64, 729–748 (1952b).

    Google Scholar 

  • Aromatic biosynthesis. V. Antagonism between shikimic acid and its precursor, 5-dehydroshikimic acid. J. Bacter. 64, 749–763 (1952c).

    Google Scholar 

  • Amer. Chem. Soc. Abstr. Kansas City Meeting, March 26, 1954, p. 18C.

    Google Scholar 

  • Davison, D. C., and W. H. Elliott: Enzymie reaction between arginine and fumarate in plant and animal tissues. Nature (Lond.) 169, 313 (1952).

    CAS  Google Scholar 

  • Dawson, C. R., and M. F. Mallette: Copper proteins. Adv. Protein Chem. 2, 179–248 (1945).

    CAS  Google Scholar 

  • Dawson, C. R., and W. B. Tarpley: Copper oxidase. In: The Enzymes, edit. J. B. Sumner and K. Myrbäck, Vol. II, Pt. 1, pp. 454–498. 1951.

    Google Scholar 

  • Denffer, D. v., M. Behrens u. A. Fischer: Papierelektrophoretische Trennung von Indolderivaten aus Pflanzenextrakten. Naturwiss. 39, 258–259 (1952).

    CAS  Google Scholar 

  • Dernby, K. G.: Studien über die proteolytischen Enzyme der Hefe und ihre Beziehung zu der Autolyse. Biochem. Z. 81, 107–208 (1917).

    Google Scholar 

  • Devi, P., G. Pontecorvo and G. Higginbottom: Requirements of Aerobacter aerogenes induced by irradiation of dried cells. J. Gen. Microbiol. 5, 781–787 (1951).

    PubMed  CAS  Google Scholar 

  • Dewan, J. G.: The l(+)glutamic dehydrogenase of annual tissues. Biochemic. J. 32, 1378–1385 (1938).

    CAS  Google Scholar 

  • Dewey, D. L., and E. Work: Diaminopimelic acid and lysine. Nature (Lond.) 169, 533–534 (1952).

    CAS  Google Scholar 

  • Done, J., and L. Fowden: A third amino-acid amide in peanut plants (Arachis hypogaea). Biochemic. J. 49, XX-XXI (1951).

    CAS  Google Scholar 

  • A new amino-acid amide in the groundnut plant (Arachis hypogaea): Evidence of the occurrence of γ-methyleneglutamine and γ-methyleneglutamic acid. Biochemic. J. 51, 451–458 (1952).

    Google Scholar 

  • Dox, A. W.: The intracellular enzymes of lower fungi, especially those of Penicillium camemberti. J. of Biol. Chem. 6, 461–467 (1909).

    Google Scholar 

  • Dubeck, M., and S. Kirkwood: The origin of the O- and N-methyl groups of the alkaloid ricinine. J. of Biol. Chem. 199, 307–312 (1952).

    CAS  Google Scholar 

  • Edlbacher, S., M. Becker u. A. V. Segesser: Die Einwirkung von Hefe auf Arginin und Histidin. Hoppe-Seylers Z. 255, 53–56 (1938).

    CAS  Google Scholar 

  • Ehrlich, F.: Über den biochemischen Abbau sekundärer und tertiärer Amine durch Hefen und Schimmelpilze. Biochem. Z. 75, 417–430 (1916).

    CAS  Google Scholar 

  • Ehrlich, F., u. P. Pistschimuka: Überführung von Aminen in Alkohole durch Hefe und Schimmelpilze. Ber. dtsch. chem. Ges. 45, 1006–1012 (1912).

    Google Scholar 

  • Ellfolk, N.: Studies on aspartase. II. On the chemical nature of aspartase. Acta chem. scand. (Copenh.) 7, 1155–1163 (1953).

    CAS  Google Scholar 

  • Studies on aspartase. III. On the specificity of aspartase. Acta chem. scand. (Copenh.) 8, 151–156 (1954).

    Google Scholar 

  • Elliott, D. F., and A. Neuberger: The irreversibility of the deamination of threonine in the rabbit and rat. Biochemie. J. 46, 207–210 (1950).

    CAS  Google Scholar 

  • Elliott, W. H.: Adenosinetriphosphate in glutamine synthesis. Nature (Lond.) 161, 128 (1948).

    CAS  Google Scholar 

  • Studies in the enzymic synthesis of glutamine. Biochemic. J. 49, 106–112 (1951).

    Google Scholar 

  • Isolation of glutamine synthetase and glutamotransferase from green peas. J. of Biol. Chem. 201, 661–672 (1953).

    Google Scholar 

  • Emerson, R. L., M. Puziss and S. G. Knight: The d-amino-acid oxidase of molds. Arch. of Biochem. 25, 299–308 (1950).

    CAS  Google Scholar 

  • Emmelin, N., and W. Feldberg: Distribution of acetylcholine and histamine in nettle plants. New Phytologist 48, 143–148 (1949).

    CAS  Google Scholar 

  • Erspamer, V., u. G. Falconieri: Papierchromatographische Untersuchungen über die Hydroxyphenylalkylamine der Gerstenkeimlinge. Naturwiss. 39, 431–432 (1952).

    CAS  Google Scholar 

  • Euler, H. v., E. Adler, G. Gunther u. N. B. Das: Über den enzymatischen Abbau und Aufbau der Glutaminsäure. II. In tierischen Geweben. Hoppe-Seylers Z. 254, 61–103 (1938).

    Google Scholar 

  • Euler, H. v., E. Adler, G. Gunther u. L. Elliott: Isocitronensäuredehydrase und Glutaminsäuresynthese in höheren Pflanzen und in Hefe. Enzymologia (Den Haag) 6, 337–341 (1939).

    Google Scholar 

  • Euler, H. v., E. Adler u. T. Steenhoff-Eriksen: Über die Komponenten der Dehydrasesysteme. XIV. Glutaminsäuredehydrase aus Hefe. Hoppe-Seylers Z. 248, 227–241 (1937).

    Google Scholar 

  • Feldman, L. I., and I. C. Gunsalus: The occurrence of a wide variety of transaminases in bacteria. J. of Biol. Chem. 187, 821–830 (1950).

    CAS  Google Scholar 

  • Fincham, J. R. S.: Mutant strains of Neurospora deficient in aminating ability. J. of Biol. Chem. 182, 61–73 (1949).

    Google Scholar 

  • Ornithine transaminase in Neurospoca and its relation to the biosynthesis of proline. Biochemic. J. 53, 313–320 (1953).

    Google Scholar 

  • Fischer, A., u. M. Behrens: Versuche zur Trennung von Indolderivaten aus wäßrigen Pflanzenextrakten an der aufsteigenden Cellulosesäule. Hoppe-Seylers Z. 291, 243–244 (1952).

    Google Scholar 

  • Fosse, R.: Origine et distribution de l’urée dans la nature. Ann. Chem., N. S. 6,198 (1916).

    Google Scholar 

  • Fowden, L.: The enzymic decarboxylation of γ-methelyneglutamic acid by plant extracts. J. of Exper. Bot. 5, 28–36 (1954).

    CAS  Google Scholar 

  • Fowden, L., and J. Done: A new transamination reaction. Nature (Lond.) 171, 1068–1069 (1953a).

    CAS  Google Scholar 

  • The enzymatic decarboxylation of γ-methylene glutamic acid. Biochemic. J. 53, XXXI–XXXII (1953b).

    Google Scholar 

  • The isolation of tyramine from a West African Criuum species. J. of Exper. Bot. 5, 305–312 (1954).

    Google Scholar 

  • Fries, N.: Growth factor requirements of some higher fungi. Sv. bot. Tidskr. 44, 380–386 (1950).

    Google Scholar 

  • Fromageot, C.: Desulfhydrases. In: The Enzymes, Vol. 1, Pt. 2, p. 1237–1243. 1951.

    CAS  Google Scholar 

  • Fürth, O. v., u. M. Friedmann: Über dié Verbreitung asparaginspaltender Organfermente. Bioehem. Z. 26, 435–440 (1910).

    Google Scholar 

  • Gale, E. F.: Factors influencing bacterial deamination. III. Aspartase. II. Its occurrence in and extraction from Bacterium coli and its activation by adenosine and related compounds. Biochemic. J. 32, 1583–1599 (1938).

    CAS  Google Scholar 

  • The bacterial amino-acid decarboxylases. Adv. Enzymol. 6, 1–32 (1946).

    Google Scholar 

  • Galston, A. W.: Indoleacetic-nicotinic acid interactions in the etiolated pea plants. Plant Physiol. 24, 577–586 (1949a).

    CAS  Google Scholar 

  • Riboflavin-sensitized photo-oxidation of indoleacetic acid and related compounds. Proc. Nat. Acad. Sci. U.S.A. 35, 10–17 (1949b).

    Google Scholar 

  • Geddes, W. F., and A. Hunter: Observations on the enzyme asparaginase. J. of Biol. Chem. 77, 197–229 (1928).

    CAS  Google Scholar 

  • Gendre, T., and E. Lederer: Sur la présence de l’acide α,ε-diamino-pimélique dans diverses souches de mycobacteries. Biochim. et Biophysica Acta 8, 49–55 (1952).

    CAS  Google Scholar 

  • Goldsworthy, P. D., T. Winnick and D. M. Greenberg: Distribution of C14 in glycine and serine of liver protein following the administration of labelled glycine. J. of Biol. Chem. 180, 341–343 (1949).

    CAS  Google Scholar 

  • Gordon, M., F. Haskins and H. K. Mitchell: The growth-promoting properties of quinic acid. Proc. Nat. Acad. Sci. U.S.A. 36, 427–430 (1950).

    CAS  Google Scholar 

  • Gordon, S. A.: Occurrence, formation and inactivation of auxins. Annual Rev. Plant Physiol. 5, 341–378 (1954).

    CAS  Google Scholar 

  • Gordon, S. A., and S. F. Nieva: The biosynthesis of auxin in the vegetative pineapple. II. The precursors of indoleacetic acid. Arch. of Biochem. 20, 367–385 (1949).

    CAS  Google Scholar 

  • Gordon, S. A., and R. P. Weber: The effect of X-radiation on indoleacetic acid and auxin levels in the plant. Amer. J. Bot. 37, 678 (1950).

    Google Scholar 

  • Goris et P. Costy: Uréase et urée chez les champignons. C. r. Acad. Sci. Paris 175, 539–541, 998–999 (1922).

    CAS  Google Scholar 

  • Gorr, G., u. J. Wagner: Ist die carboxylatische Spaltung der Brenztraubensäure in Acetaldehyd und Kohlensäure durch Leberbrei eindeutig erwiesen? Biochem. Z. 254, 5–7 (1932).

    CAS  Google Scholar 

  • Über das Amidspaltungsvermögen der Torula utilis, eine Untersuchung über die Abhängigkeit pflanzlicher Enzymausbildung von der Stickstoffernährung. Biochem. Z. 266, 96–101 (1933).

    Google Scholar 

  • Grassmann, W., u. O. Mayr: Zur Kenntnis der Hefeasparaginase. Hoppe-Seylers Z. 214, 185–210 (1933).

    CAS  Google Scholar 

  • Green, D. E., L. F. Leloir and V. Nocito: Transaminases. J. of Biol. Chem. 161, 559–582 (1945).

    CAS  Google Scholar 

  • Greenberg, D. M.: Carbon catabolism of amino-acids. In: Chemical Pathways of Metabolism, Vol. II, pp. 47–112. New York: Academic Press 1954.

    Google Scholar 

  • Greenhill, A. W., and A. C. Chibnall: Exudation of glutamine from perennial rye-grass. Biochemic. J. 28, 1422–1427 (1934).

    CAS  Google Scholar 

  • Greenstein, J. P., and V. E. Price: α-keto acid-activated glutaminase and asparaginase. J. of Biol. Chem. 178, 695–705 (1949).

    CAS  Google Scholar 

  • Grimmer, W., u. B. Wiemann: Beiträge zur Mikrochemie der Mikroorganismen. (Abstract.) Chem. Zbl. (1) 1921, 775.

    Google Scholar 

  • Grisolia, S., and P. P. Cohen: The catalytic role of carbamylglutamate in citrulline biosynthesis. J. of Biol. Chem. 198, 561–571 (1952).

    CAS  Google Scholar 

  • Catalytic role of glutamate derivatives in citrulline biosynthesis. J. of Biol. Chem. 204, 753–757 (1953).

    Google Scholar 

  • Grisolia, S., H. J. Grady and D. P. Wallach: Biosynthetic and structural relationship of compound X and carbamyl phosphate. Biochem. et Biophysica Acta 17, 277–278 (1955).

    CAS  Google Scholar 

  • Grobbelaar, N., and F. C. Steward: Pipecolic acid in Phaseolus vulgaris: evidence on its derivation from lysine. J. Amer. Chem. Soc. 75, 4341–4343 (1953).

    CAS  Google Scholar 

  • Grover, C. E., and A. C. Chibnall: The enzymic deamidation of asparagine in the higher plants. Biochemic. J. 21, 857–868 (1927).

    CAS  Google Scholar 

  • Guggenheim, M.: Die biogenen Amine. Basel: S. Karger 1951.

    Google Scholar 

  • Gustafson, E. G.: Tryptophan as an intermediate in the synthesis of nicotinic acid by green plants. Science (Lancaster, Pa.) 110, 279 (1949).

    CAS  Google Scholar 

  • Haas, F., M. B. Mitchell, B. N. Ames and H. K. Mitchell: A series of histidineless mutants of Neurospora crassa. Genetics 37, 217–226 (1952).

    PubMed  CAS  Google Scholar 

  • Haddox, C. H.: The accumulation of α-phenylglycine by mutants of Neurospora crassa stimulated by phenylalanine and tyrosine. Proc. Nat. Acad. Sci. U.S.A. 38, 482–489 (1952).

    CAS  Google Scholar 

  • Haehn, H., u. H. Leopold: Aspartase action of yeast. Biochem. Z. 292, 380–387 (1937).

    CAS  Google Scholar 

  • Hall, D. A.: Histidine α-deaminase and the production of urocanic acid in the mammal. Biochemic. J. 51, 499–504 (1952).

    CAS  Google Scholar 

  • Happold, F. C.: Tryptophanase-tryptophan reaction. Adv. Enzymol. 10, 51–82 (1950).

    Google Scholar 

  • Harley-Mason, J.: Mechanism of tryptophane biogenesis and decomposition. Experientia (Basel) 10, 134 (1954).

    CAS  Google Scholar 

  • Hasse, K., u. H. W. Schumacher: Das Reaktionsprodukt der Decarboxylierung der l-Glutaminsäure mittels pflanzlicher Decarboxylase. Chem. Ber. 83, 68–71 (1950).

    CAS  Google Scholar 

  • Hayaishi, O., H. Tabor and T. Hayaishi: Enzymatic formation of formylaspartic acid from imidazolacetic acid. J. Amer. Chem. Soc. 76, 5570–5571 (1954).

    CAS  Google Scholar 

  • Hemberg, T.: Studies of auxins and growth-inhibiting substances in the potato tuber and their significance with regard to its rest period. Acta Horti berg. (Stockh.) 14, 133–220 (1947).

    CAS  Google Scholar 

  • Henderson, J. H. M., and J. Bonner: A comparison of auxin metabolism in crown-gall and callus tissue of sunflower. Amer. J. Bot. 36, 825 (1949).

    Google Scholar 

  • Auxin metabolism in normal and crowngall tissue of sunflower. Amer. J. Bot. 39, 444–451 (1952).

    Google Scholar 

  • Henry, T. A.: The Plant Alkaloids, 4. edit. London: Churchill 1949.

    Google Scholar 

  • Hevesy, G., K. Linderstrøm-Lang, A. S. Keston u. O. Carsten: Exchange of nitrogen atoms in the leaves of the sunflower. C. r. Trav. Labor. Carlsberg, Ser. Chim. 23, 213–218 (1940). Ref. Chem. Abstr. 35, 1835 (1941).

    CAS  Google Scholar 

  • Hills, G. M.: Ammonia production by pathogenic bacteria. Biochemic. J. 34, 1057–1069 (1940).

    CAS  Google Scholar 

  • Hirai, K.: Über die Bildung von p-Oxyphenylessigsäure und p-Oxyphenylacrylsäure aus l-Tyrosin durch Bakterien. Biochem. Z. 114, 71 (1921).

    CAS  Google Scholar 

  • Hiwatashi, D.: Yeast asparaginase. Tohoku J. Exper. Med. 42, 1–8 (1942). Ref. Chem. Abstr. 42, 5067 (1948).

    CAS  Google Scholar 

  • Hockenhull, D. J. D.: The sulphur metabolism of mould fungi: The use of “biochemical mutant” strains of Aspergillus nidans in elucidating the biosynthesis of cystine. Biochim. et Biophysica Acta 3, 326–335 (1949).

    CAS  Google Scholar 

  • Hoogerheide, J. C., and W. Kocholaty: Metabolism of the strict anaerobes. II. Reduction of amino-acids with gaseous hydrogen by suspensions of Cl. sporogenes. Biochemic. J. 32, 949 (1938).

    CAS  Google Scholar 

  • Horowitz, N. H.: The d-amino acid oxidase of Neurospoca. J. of Biol. Chem. 154, 141–149 (1944).

    CAS  Google Scholar 

  • The isolation and identification of natural precursors of choline. J. of Biol. Chem. 162, 413–419 (1946).

    Google Scholar 

  • Methionine synthesis in Neurospoca. Isolation of cystathione. J. of Biol. Chem. 171, 255–264 (1947).

    Google Scholar 

  • Biochemical genetics of Neurospora. Adv. Genet. 3, 33–71 (1950).

    Google Scholar 

  • Horowitz, N. H., and G. W. Beadle: A microbiological method for the determination of choline by use of a mutant of Neurospora. J. of Biol. Chem. 150, 325–333 (1943).

    CAS  Google Scholar 

  • Horowitz, N. H., and A. M. Srb: Growth inhibition of Neurospora by canavanine and its reversal. J. of Biol. Chem. 174, 371 (1948).

    CAS  Google Scholar 

  • Hughes, D. E.: Acceleration of bacterial decarboxylase and glutaminase by cetyltrimethylammonium bromide (cetavlon). Biochemic. J. 45, 325–331 (1949).

    CAS  Google Scholar 

  • Hughes, D. E., and D. H. Williamson: Some properties of the glutaminase of Clostridium welchii. Biochemic. J. 51, 45–55 (1952).

    CAS  Google Scholar 

  • Hulme, A. C., and W. Arthington: γ-aminobutyric acid and β-alanine in plant tissues. Amino acids of the apple fruit. Nature (Lond.) 165, 716 (1950).

    CAS  Google Scholar 

  • Hulme, A. C., and A. Richardson: The non-volatile organic acids of grass. J. Sci. Food a. Agricult. 5, 221–225 (1954).

    CAS  Google Scholar 

  • Hunter, A., and H. E. Woodward: The specificity or arginase: action upon argininic acid. Biochemic. J. 35, 1298–1306 (1941).

    CAS  Google Scholar 

  • Ishihara, T.: Fukuoka-Ikwadaigaku-Zasshi 24, 1213 (1932). Ref. Chem. Abstr. 26, 3539 (1932).

    Google Scholar 

  • Jacobsohn, K. P., et M. Soares: The hypothetical existence of the ammoniacase group of enzymes. C. r. Soc. Biol. Paris 125, 554–556 (1937).

    CAS  Google Scholar 

  • Jakoby, W. B.: Kynurenine from Neurospora. J. of Biol. Chem. 207, 657–663 (1954).

    CAS  Google Scholar 

  • James, W. O.: Biosynthesis of the belladonna alkaloids. Nature (Lond.) 158, 654–656 (1946).

    CAS  Google Scholar 

  • The amino-acid precursors of the belladonna alkaloids. New Phytologist 48, 172 (1949).

    Google Scholar 

  • James, W. O., E. A. H. Roberts, H. Beevers and P. C. De Kock: The secondary oxidation of amino acids by the catechol oxidase of belladonna. Biochemic. J. 43, 626–636 (1948).

    CAS  Google Scholar 

  • Jones, E. R., H. B. Henbest, G. F. Smith and J. A. Bentley: 3-indolylacetonitrile: a naturally occurring plant growth hormone. Nature (Lond.) 169, 485 (1952).

    CAS  Google Scholar 

  • Jones, J. D., B. S. W. Smith and W. C. Evans: Homogentisie acid an intermediate in the metabolism of tyrosine by the aromatic ring-splitting micro-organisms. Biochemic. J. 51, XI–XII (1952).

    Google Scholar 

  • Jones, M. E., L. Spector and F. Lipmann: Carbamyl phosphate, the carbamyl donor in enzymatic citrulline synthesis. J. Amer. Chem. Soc. 77, 819–820 (1955).

    CAS  Google Scholar 

  • Jukes, J. H., A. C. Dornbush and J. J. Oleson: Some observations on nutritional effects of choline and related compounds. Federat. Proc. 4, 157 (1945).

    Google Scholar 

  • Kaerney, E., and T. P. Singer: Enzymie transformations of l-cysteinesulfinic acid. Biochim. et Biophysica Acta 11, 276–289 (1953).

    Google Scholar 

  • Kenten, R. H., and P. J. G. Mann: The oxidation of amines by extracts of pea seedlings. Biochemic. J. 50, 360–369 (1952).

    CAS  Google Scholar 

  • Kiesel, A.: Über den fermentativen Abbau des Arginins in Pflanzen. Hoppe-Seylers Z. 75, 169–196 (1911).

    Google Scholar 

  • Über den fermentativen Abbau des Arginins in Pflanzen. Hoppe-Seylers Z. 118, 267–276 (1922).

    Google Scholar 

  • Kirkwood, S., and L. Marion: The biogenesis of alkaloids. I. The isolation of N-methyltyramine from barley. J. Amer. Chem. Soc. 72, 2522–2524 (1950).

    CAS  Google Scholar 

  • Kisliuk, R. L., and W. Sakami: A study of the mechanism of serine biosynthesis. J. of Biol. Chem. 214, 47–57 (1955).

    CAS  Google Scholar 

  • Knight, S. G.: The l-amino acid oxidase of moulds. J. Bacter. 55, 401–407 (1948).

    CAS  Google Scholar 

  • Knoop, F.: Über den physiologischen Abbau der Säuren und die Synthese einer Aminosäure im Tierkörper. Hoppe-Seylers Z. 67, 489–502 (1910).

    Google Scholar 

  • Knox, W. E., and M. le May Knox: The oxidation in liver of l-tyrosme to acetoacetate through p-hydroxyphenylpyruvate and homogentisie acid. Biochemic. J. 49, 686–693 (1951).

    CAS  Google Scholar 

  • Knox, W. E., and A. H. Mehler: The conversion of tryptophane to kynurenine in the liver. I. The coupled tryptophane peroxidase-oxidase system forming formylkynurenine. J. of Biol. Chem. 187, 419 (1950).

    CAS  Google Scholar 

  • Kossel, A., u. H. D. Dakin: Über die Argmase. Hoppe-Seylers Z. 41, 321–331 (1904).

    Google Scholar 

  • Weitere Untersuchungen über fermentative Harnstoffbildung. Hoppe-Seylers Z. 42, 181–188 (1905).

    Google Scholar 

  • Krebs, H. A.: The metabolism of amino acids in the animal body. Klin. Wschr. 11, 1744–1748 (1932).

    CAS  Google Scholar 

  • Untersuchungen über den Stoffwechsel der Aminosäuren im Tierkörper. Hoppe-Seylers Z. 217, 191–227 (1933).

    Google Scholar 

  • Quantitative determination of glutamine and glutamic acid. Biochemie. J. 43, 51–57 (1948).

    Google Scholar 

  • Oxidation of amino-acids. In: The Enzymes, edit. J. B. Sumner and K. Myrbäck, Vol. II, Pt. 1, p. 499–535. New York 1951.

    Google Scholar 

  • Krebs, H. A., L. V. Eggleston and V. A. Knivett: Arsenolysis and phosphorolysis of citrulline in mammalian liver. Biochemic. J. 59, 185–193 (1955).

    CAS  Google Scholar 

  • Krebs, H. A., u. K. Henseleit: Untersuchungen über die Harnstoffbildung im Tierkörper. Hoppe-Seylers Z. 210, 33–66 (1932).

    CAS  Google Scholar 

  • Krehl, W. A.: Niacin in amino acid metabolism. Vitamins a. Hormones 7, III (1949).

    Google Scholar 

  • Kritzman, M. G.: Das Ferment der Glutaminsäureumaminierung. V. Bildung und Zerfall von Aminosäuren durch intermolekulare Umlagerung von Aminogruppen. Biochimija 3, 603–615 (1938).

    Google Scholar 

  • The enzyme system transferring the amino group of aspartic acid. Nature (Lond.) 143, 603–604 (1939).

    Google Scholar 

  • Kritzman, M. G., i O. P. Samarina: Aspartico-alanine aminopherase. Dokl. Akad. Nauk SSSR. 63, 171–173 (1948). Ref, Chem. Abstr. 43, 2252 (1949).

    Google Scholar 

  • Kulescha, Z.: Recherches sur la transformation du tryptophane sous l’action des tissues de Topinambour. C. r. Acad. Sci. Paris 228, 1304 (1949).

    PubMed  CAS  Google Scholar 

  • Kulescha, Z., et R. J. Gautheret: Recherches sur l’action de la cynurenine sur les tissues de topinambour culturés in vitro. G. r. Soc. Biol. Paris 145, 245 (1951).

    CAS  Google Scholar 

  • Kurona, K.: Über die Bedeutung des Oryzanins für die Ernährung der Gärungsorganismen. J. Coll. Agricult. Univ. Tokyo 5, 305 (1915).

    Google Scholar 

  • La Du jr., B., and D. M. Greenberg: The tyrosine oxidation system of liver. I. Extracts of rat liver acetone powder. J. of Biol. Chem. 190, 245é255 (1951).

    Google Scholar 

  • Ascorbic acid and the oxidation of tyrosine. Science (Lancaster, Pa.) 117, 111é112 (1953).

    Google Scholar 

  • Lampen, J. O., R. R. Roepke and M. J. Jones: Studies in the sulphur metabolism of Escherichia coli. III. Mutant strains of Escherichia coli unable to utilise sulphate for their complete sulphur requirements. Arch. of Biochem. 13, 55–66 (1947).

    CAS  Google Scholar 

  • Larsen, P.: 3-indole acetaldehyde as a growth hormone in higher plants. Dansk bot. Ark. 11, 1–132 (1944).

    Google Scholar 

  • Conversion of indole acetaldehyde to indoleacetic acid in excised coleoptile and in coleoptile juice. Amer. J. Bot. 36, 32–41 (1949).

    Google Scholar 

  • Formation, occurrence and inactivation of growth substances. Annual Rev. Plant Physiol. 2, 169–198 (1951).

    Google Scholar 

  • Larsen, P., and E. K. Bonde: Auxins and auxin precursors in plants. Nature (Lond.) 171, 180 (1953).

    CAS  Google Scholar 

  • Leete, E., and L. Marion: The biogenesis of alkaloids. VII. The formation of hordenine and N-methyltyramine from tyrosine in barley. Canad. J. Chem. 31, 126–133 (1953).

    CAS  Google Scholar 

  • Leonard, M. J. K., and R. H. Burris: A survey of transaminases in plants. J. of Biol. Chem. 170, 701–709 (1947).

    CAS  Google Scholar 

  • Lexander, K.: Growth-regulating substances in roots of wheat. Physiol. Plantarum (Copenh.) 6, 406–411 (1953).

    CAS  Google Scholar 

  • Lichstein, H. C., and J. F. Christman: The role of biotin and adenylic acid in amino deaminases. J. of Biol. Chem. 175, 649–662 (1948).

    CAS  Google Scholar 

  • The nature of the coenzyme of aspartic acid, serine and threonine deaminases. J. Bacter. 58, 565–572 (1949).

    Google Scholar 

  • Lichstein, H. C., and P. P. Cohen: Transamination in bacteria. J. of Biol. Chem. 157, 85–91 (1945).

    CAS  Google Scholar 

  • Lichstein, H. C., and W. W. Umbreit: Biotin activation of certain deaminases. J. of Biol. Chem. 170, 423–424 (1947).

    CAS  Google Scholar 

  • Lien, J., H. K. Mitchell and M. B. Houlahan: A method for selection of biochemical mutants of Neurospora. Proc. Nat. Acad. Sci. U.S.A. 34, 435–442 (1948).

    Google Scholar 

  • Lien Jr., O. G., and D. M. Greenberg: Chromatographic studies on the interconversion of amino acids. J. of Biol. Chem. 195, 637–644 (1952).

    CAS  Google Scholar 

  • Magasanik, B., and H. R. Bowser: The degradation of histidine by Aerobacter aerogenes. J. of Biol. Chem. 213, 571–580 (1955).

    CAS  Google Scholar 

  • Marsh, P. B., and D. R. Goddard: Respiration and fermentation in the carrot, Daucus carota. I. Respiration. Amer. J. Bot. 26, 724–728 (1939).

    CAS  Google Scholar 

  • Marshall, R. O., L. M. Hall and P. P. Cohen: On the nature of the carbamyl donor in citrulline biosynthesis. Biochem. et Biophysica Acta 17, 279–281 (1955).

    CAS  Google Scholar 

  • Matchett, T. J., L. Marion and S. Kirkwood: The biogenesis of alkaloids. VIII. The role of methionine in the formation of the N-methyl groups of the alkaloid hordenine. Canad. J. Chem. 31, 488–492 (1953).

    CAS  Google Scholar 

  • Mateer, J. G., and E. K. Marshall jr.: The urease content of certain beans, with special reference to the jack bean. J. of Biol. Chem. 25, 297–305 (1916).

    CAS  Google Scholar 

  • Mc Ilwain, H.: Synthesis and breakdown of glutamine by various micro-organisms. J. Gen. Microbiol. 2, 186–196 (1948).

    CAS  Google Scholar 

  • Mc Meekin, T. L.: A study of the preparation and of the conditions for hydrolytic activity of asparaginase. J. of Biol. Chem. 123, LXXXII (1938).

    Google Scholar 

  • Mehler, A. H., and W. E. Knox: The conversion of tryptophane to kynurenine in the liver. II. The enzymatic hydrolysis of formylkynurenine. J. of Biol. Chem. 187, 431 (1950).

    CAS  Google Scholar 

  • Mehler, A. H., and H. Tabor: Deamination of histidine to form urocanic acid in liver. J. of Biol. Chem. 201, 775–784 (1953).

    CAS  Google Scholar 

  • Meister, A.: Utilization and transamination of the stereoisomers and keto analogues of isoleucine. J. of Biol. Chem. 195, 813–826 (1952).

    CAS  Google Scholar 

  • Preparation and enzymatic reactions of the keto analogues of asparagine and glutamine. J. of Biol. Chem. 200, 571–589 (1953).

    Google Scholar 

  • The α-keto analogues of arginine, ornithine and lysine. J. of Biol. Chem. 206, 577–585 (1954).

    Google Scholar 

  • Enzymatic transamination reactions involving arginine and ornithine. J. of Biol. Chem. 206, 587–596 (1954).

    Google Scholar 

  • Studies on the mechanism and specificity of the glutamine-α-keto acid transamination-deamidation reaction. J. of Biol. Chem. 210, 17–35 (1954b).

    Google Scholar 

  • Meister, A., P. E. Fraser and S. V. Tice: Enzymatic desulfuration of β-mercaptopyruvate to pyruvate. J. of Biol. Chem. 206, 561–575 (1954).

    CAS  Google Scholar 

  • Meister, A., H. A. Sober, S. V. Tige and P. E. Fraser: Transamination and associated deamidation of asparagine and glutamine. J. of Biol. Chem. 197, 319–330 (1952).

    CAS  Google Scholar 

  • Meister, A., and S. V. Tice: Transamination from glutamine to α-keto acids. J. of Biol. Chem. 187, 173–187 (1950).

    CAS  Google Scholar 

  • Metzler, D. E., and E. E. Snell: Daemination of serine. I. Catalytic deamination of serine and cysteine by pyridoxal and metal salts. J. of Biol. Chem. 198, 353–361 (1952).

    CAS  Google Scholar 

  • Deamination of serine. II. d-serine dehydrase, a vitamin B6 enzyme from Escherichia coli. J. of Biol. Chem. 198, 363–373 (1952).

    Google Scholar 

  • Miller, A., and H. Waelsch: α-l-formamidinoglutaric acid an intermediate in histidine metabolism. J. Amer. Chem. Soc. 76, 6195–6196 (1954).

    CAS  Google Scholar 

  • Mitchell, H. K., and M. B. Houlahan: An intermediate in the biosynthesis of lysine by Neurospora. J. of Biol. Chem. 174, 883–887 (1948).

    CAS  Google Scholar 

  • Mitchell, H. K., and J. P. Nyc: Hydroxyanthranilic acid as a precursor of nicotinic acid in Neurospora. Proc. Nat. Acad. Sci. U.S.A. 34, 1 (1948).

    CAS  Google Scholar 

  • Mitchell, K. M.: Vitamins and metabolism in Neurospora. Vitamins a. Hormones 8, 127 (1950).

    CAS  Google Scholar 

  • Mitoma, C., and L. C. Leeper: Enzymatic conversion of phenylalanine to tyrosine. Federat. Proc. 13, 266 (1954).

    Google Scholar 

  • Miwa, T., and S. Yoshii: The formation of urease by Aspergillus niger. Sci. Rep. Tokyo Bunrika Daigaku B 1, 243–270 (1934).

    CAS  Google Scholar 

  • Morrison, R. I.: The isolation of l-pipecolinic acid from Trifolium repens. Biochemic. J. 53, 474–478 (1953).

    CAS  Google Scholar 

  • Mothes, K.: Die Vakuuminfiltration im Ernährungsversuch. (Dargestellt an Untersuchungen über die Assimilation des Ammoniaks.) Planta (Berl.) 19, 117–138 (1933).

    CAS  Google Scholar 

  • Über den Schwefelstoffwechsel der Pflanzen. II. Planta (Berl.) 29, 67–109 (1938).

    Google Scholar 

  • Myer, J. W., and E. A. Adelberg: Proc. Nat. Acad. Sei. U.S.A. 1955.

    Google Scholar 

  • Neubauer, O.: Über den Abbau der Aminosäuren im gesunden und kranken Organismus. Dtsch. Arch. klin. Med. 95, 211–256 (1909).

    CAS  Google Scholar 

  • Nitsch, J. P.: Plant hormones in the development of fruits. Quart. Rev. Biol. 27, 33–57 (1952).

    PubMed  CAS  Google Scholar 

  • Nitsch, J. P., and R. H. Wetmore: The microdetermination of “free” l-tryptophan in the seedling of Lupinus albus. Science (Lancaster, Pa.) 116, 256–257 (1952).

    CAS  Google Scholar 

  • Nord, F. F.: Biochemische Bildung von Ammoäthylalkohol aus Serin. Biochem. Z. 95, 281–285 (1919).

    CAS  Google Scholar 

  • Oginsky, E. H., and R. F. Gehrig: The arginine dehydrolase system of Streptococcus faecalis. I. Identification of citrulline as an intermediate. J. of Biol. Chem. 198, 791–797 (1952).

    CAS  Google Scholar 

  • Okunuki, K.: Über ein neues Enzym Glutaminocarboxylase. Bot. Mag. (Tokyo) 51, 270–278 (1937).

    Google Scholar 

  • Über den Gaswechsel der Pollen. III. Weitere Untersuchungen über die Dehydrasen aus den Pollenkömern. Acta phytochim. (Tokyo) 11, 65–80 (1939).

    Google Scholar 

  • Ostenberg, Z.: Further studies in the occurrence of p-hydroxyphenylethylamine in mistletoes. Proc. Soc. Exper. Biol. a. Med. 12, 174–175 (1915).

    CAS  Google Scholar 

  • Otey, M. C., S. M. Birnbaum and J. P. Greenstein: Solubilized kidney glutaminase. I. Arch. of Biochem. a. Biophysics 49, 245–247 (1954).

    CAS  Google Scholar 

  • Oyamada, Y.: Der enzymatische Abbau des Histidins. J. of Biochem. (Tokyo) 36, 227–242 (1944).

    CAS  Google Scholar 

  • Partridge, C. W. H., D. Bonner and C. Yanofsky: A quantitative study of the relationship between tryptophan and niacin in Neurospora. J. of Biol. Chem. 194, 269 (1952).

    CAS  Google Scholar 

  • Phinney, B. O.: Cysteine mutants in Neurospora. Genetics 33, 624 (1948).

    PubMed  CAS  Google Scholar 

  • Pimper, S.: Methionine-requiring mutants of Saccharomyces cerevisiae. J. Bacter. 65, 666–670 (1953).

    Google Scholar 

  • Pontecorvo, G.: Biochemical genetics of Aspergillus nidulans. Heredity (Lond.) 4, 270 (1950).

    Google Scholar 

  • Proom, H., and A. J. Woiwod: The distribution of glutamic acid decarboxylase in the family Enterobacteriaceae, examined by a simple chromatographic method. J. Gen. Microbiol. 5, 681–686 (1951).

    PubMed  CAS  Google Scholar 

  • Quastel, J. H., and B. Woolf: The equilibrium between l-aspartie acid, fumarie acid and ammonia in presence of resting bacteria. Biochemic. J. 20, 545–555 (1926).

    CAS  Google Scholar 

  • Raistrick, H.: On a new type of chemical change produced by bacteria. The conversion of histidine into urocanic acid by bacteria of the coli-typhosus group. Biochemic. J. 11. 71 (1917).

    CAS  Google Scholar 

  • Ratner, S., V. Nocito and D. E. Green: Glycine oxidase. J. of Biol. Chem. 152, 119–133 (1944).

    CAS  Google Scholar 

  • Ratner, S., and B. Petrack: The mechanism of arginine synthesis from citrulline in kidney. J. of Biol. Chem. 200, 175–185 (1953).

    CAS  Google Scholar 

  • Biosynthesis of urea. IV. Further studies on condensation in arginine synthesis from citrulline. J. of Biol. Chem. 200, 161–174 (1953).

    Google Scholar 

  • Rautanen, N.: On the synthesis of the first amino acids in green plants. Ann. Acad. Sci. fenn., Ser. A, II, Chem. 1948, Nr 33.

    Google Scholar 

  • Ravdin, R. G., and D. I. Crandall: The enzymatic conversion of homogentisie acid to 4-fumarylaeetoaeetic acid. J. of Biol. Chem. 189, 137–149 (1951).

    CAS  Google Scholar 

  • Reed, L. J.: The occurrence of γ-aminobutyric acid in yeast extract; its isolation and identification. J. of Biol. Chem. 183, 451–458 (1950).

    CAS  Google Scholar 

  • Reichard, P., L. H. Smith and G. Hanshoff: Enzymic synthesis of ureidosuceinie acid from citrulline via compound X and carbamyl phosphate. Acta chem. scand. (Copenh.) 9, 1010–1012 (1955).

    CAS  Google Scholar 

  • Reissig, J. L.: Pyridoxal phosphate as a co-factor for serine and threonine deaminase of Neurospora. Arch. of Biochem. a. Biophysics 36, 234–235 (1952).

    CAS  Google Scholar 

  • Richards, F. J., and E. Berner Jr.: Physiological studies in plant nutrition. XVII. A general survey of the free amino-acids of barley leaves as affected by mineral nutrition with special reference to potassium supply. Ann. of Bot. 18, 15–33 (1954).

    CAS  Google Scholar 

  • Richards, F. J., and R. G. Coleman: Occurrence of putrescine in potassium-deficient barley. Nature (Lond.) 170, 460 (1952).

    CAS  Google Scholar 

  • Richardson, A., and A. C. Hulme: Shikimic acid in grass. Nature (Lond.) 175, 43 (1955).

    CAS  Google Scholar 

  • Roberts, E. H., u. H. E. Street: The continuous culture of excised rye roots. Physiol. Plantarum (Copenh.) 8, 238–262 (1955).

    CAS  Google Scholar 

  • Robinson, E., and R. Brown: The development of the enzyme complement in growing root cells. J. of Exper. Bot. 3, 356–374 (1952).

    CAS  Google Scholar 

  • Roine, P.: On the formation of primary amino acids in the protein synthesis in yeast. Ann. Acad. Sci. fenn., Ser. A, II, Chem. 1917, Nr 26.

    Google Scholar 

  • Rosenberg, A. J., and B. Nisman: Sur l’action l-aminoacide oxydasigne de Cl. sporogenes et de Cl. saccharobutyricum en presence d’oxygene. Biochim. et Biophysica Acta 3, 348–357 (1949).

    CAS  Google Scholar 

  • Rothstein, M., and L. L. Miller: Loss of the α-amino group in lysine metabolism to form pipecolic acid. J. Amer. Chem. Soc. 76, 1459 (1954).

    CAS  Google Scholar 

  • Rudman, D., and A. Meister: Transamination in Escherichia coli. J. of Biol. Chem. 200, 591–604 (1953).

    CAS  Google Scholar 

  • Salamon, I. I., and B. D. Davis: Aromatic biosynthesis. IX. The isolation of a precursor of shikimic acid. J. Amer. Chem. Soc. 75, 5567–5571 (1953).

    CAS  Google Scholar 

  • Schales, O.: Amino acid decarboxylases. In: The Enzymes, Vol. 2, Pt. 1, pp. 216–247. New York: Academic Press 1951.

    Google Scholar 

  • Schales, O., V. Mims and S. S. Schales: Glutamic acid decarboxylase of higher plants. I. Distribution, preparation of clear solutions, nature of prosthetic group. Arch. of Biochem. 10, 455–465 (1946).

    CAS  Google Scholar 

  • Schales, O., and S. S. Schales: Glutamic acid decarboxylase of higher plants. II. ph-activity curve, reaction kinetics, inhibition by hydroxylamine. Arch. of Biochem. 11, 155–166 (1946).

    CAS  Google Scholar 

  • Schepartz, B.: Transamination as a step in tyrosine metabolism. J. of Biol. Chem. 193, 293–298 (1951).

    CAS  Google Scholar 

  • Schmalfuss, H., u. H. Bumbacher: Darkening of potatoes. Propagation and preparation of nondarkening potatoes. IX. A pro-pigment of the potato. Biochem. Z. 315, 97–103 (1943).

    CAS  Google Scholar 

  • Schmalfuss, K., u. K. Mothes: Über die fermentative Desamidierung durch Aspergillus niger. Biochem. Z. 221, 134–153 (1930).

    CAS  Google Scholar 

  • Schmidt, G. C., M. A. Logan and A. A. Tytell: The degradation of arginine by Clostridium perfringens (BP 6 K). J. of Biol. Chem. 198, 771–783 (1952).

    CAS  Google Scholar 

  • Schoenheimer, R.: The dynamic state of body constituents. Cambridge, Mass.: Harvard Univ. Press 1942.

    Google Scholar 

  • Schwab, G.: Studien über Verbreitung und Bildung der Säureamide in der höheren Pflanze. Planta (Berl.) 25, 579–606 (1936).

    CAS  Google Scholar 

  • Schweet, R. S., J. T. Holden and P. H. Lowy: Lysine metabolism in Neurospora. Federat. Proc. 13, 293 (1954).

    Google Scholar 

  • Schweigert, B. S.: The role of vitamin B6 in the synthesis of tryptophane from indole and anthranilic acid by Lactobacillus arabinosus. J. of Biol. Chem. 168, 283 (1947).

    CAS  Google Scholar 

  • Shambaugh, N. F., H. B. Lewis and D. Tourtellote: Comparative studies in the metabolism of amino acids. IV. Phenylalanine and tyrosine. J. of Biol. Chem. 92, 499–511 (1931).

    CAS  Google Scholar 

  • Shemin, D.: The biological conversion of l-serine to glycine. J. of Biol. Chem. 162, 297–307 (1946).

    CAS  Google Scholar 

  • Shibata, K.: Über das Vorkommen von Amide spaltenden Enzymen bei Pilzen. Beitr. chem. Physiol. u. Path. 5, 384–394 (1903).

    Google Scholar 

  • Singer, T. P., and E. S. G. Barron: Studies on biological oxidations. XIX. Sulfhydryl enzymes in carbohydrate metabolism. J. of Biol. Chem. 157, 221–240 (1945).

    Google Scholar 

  • Skinner, J. S., and H. E. Street: Studies in the growth of excised roots. II. Observations on the growth of excised groundsel roots. New Phytologist 53, 44–67 (1954).

    CAS  Google Scholar 

  • Skoog, F.: The effect of X-irradiation on auxin and plant growth. J. Cellul. a. Comp. Physiol. 7, 227–270 (1935).

    CAS  Google Scholar 

  • A deseeded Avena test method for small amounts of auxin and auxin precursors. J. Gen. Physiol. 20, 311–334 (1937).

    Google Scholar 

  • Snell, E. E.: Growth promotion in tryptophane-deficient media of o-aminobenzoic acid and its attempted reversal with orthanilamide. Arch. of Biochem. 2, 389–394 (1943).

    CAS  Google Scholar 

  • Sourkes, T. L.: Transmethylases. In: The Enzymes, edit. J. B. Sumner and K. Myrbäck, Vol. 1, Pt. 2, pp. 1068–1078. New York 1951.

    Google Scholar 

  • Speck, J. F.: The enzymic synthesis of glutamine. J. of Biol. Chem. 168, 403–404 (1947).

    CAS  Google Scholar 

  • The enzymatic synthesis of glutamine, a reaction utilising adenosine triphosphate. J. of Biol. Chem. 179, 1405–1426 (1949).

    Google Scholar 

  • Srb, A. M.: Ornithinearginine metabolism in Neurospora and its genetic control. Thesis, Stanford University 1946.

    Google Scholar 

  • Srb, A. M., J. R. S. Fincham and D. Bonner: Evidence from gene mutations in Neurospora for close metabolic relationships among ornithine, proline and α-amino-δ-hydroxyvaleric acid. Amer. J. Bot. 37, 533 (1950).

    CAS  Google Scholar 

  • Srb, A. M., and N. H. Horowitz: The ornithine cycle in Neurospora and its genetic control. J. of Biol. Chem. 154, 129–139 (1944).

    CAS  Google Scholar 

  • Sreerangachar, H. B.: The nature of the tea-oxidase system. Biochemic. J. 37, 661–667 (1943).

    CAS  Google Scholar 

  • Steensholt, G.: On methylation processes in etiolated wheat germs. Acta physiol. scand. (Stockh.) 11, 136–140 (1946).

    CAS  Google Scholar 

  • Stehsel, M. L., and S. G. Wildman: Interrelations between tryptophane, auxin and nicotinic acid during development of the com kernel. Amer. J. Bot. 37, 682–683 (1950).

    Google Scholar 

  • Stephenson, M.: Bacterial metabolism, 3rd edit. London: Longmans, Green & Co. 1949.

    Google Scholar 

  • Stetten, D.: The fate of dietary serine in the body of the rat. J. of Biol. Chem. 144, 501–506 (1942).

    CAS  Google Scholar 

  • Steward, F. C., and H. E. Street: The nitrogenous constituents of plants. Annual Rev. Biochem. 16, 471–502 (1947).

    CAS  Google Scholar 

  • Steward, F. C., and J. F. Thompson: Proteins and protein metabolism in plants in The Proteins, edit. H. Neurath and K. Barley, Vol. IIA, pp. 513-594. Academic Press 1954.

    Google Scholar 

  • Steward, F. C., J. F. Thompson and C. E. Dent: Aminobutyric acid: A constituent of the potato tuber? Seienee (Lancaster, Pa.) 110, 439–440 (1949).

    Google Scholar 

  • Stickland, L. H.: Studies in the metabolism of the strict anaerobes (Genus Clostridium). I. The chemical reactions by which Cl. sporogenes obtains its energy. Biochemic. J. 28, 1746–1759 (1934).

    CAS  Google Scholar 

  • Studies in the metabolism of the strict anaerobes (Genus Clostridium). II. The reduction of proline. Biochemic. J. 29, 288–290 (1935).

    Google Scholar 

  • Studies in the metabolism of the strict anaerobes (Genus Clostridium). III. The oxidation of alanine by Cl. sporogenes. Biochemic. J. 29, 889–896 (1935).

    Google Scholar 

  • Studies in the metabolism of the strict anaerobes (Genus Clostridium). IV. The reduction of glycine by Cl. sporogenes. Biochemic. J. 29, 896–898 (1935).

    Google Scholar 

  • Stowe, B. B., and K. V. Thimann: Indolepyruvic acid in maize. Nature (Lond.) 172, 764 (1953).

    CAS  Google Scholar 

  • Street, H. E.: Nitrogen metabolism of higher plants. Adv. Enzymol. 9, 391–454 (1949).

    CAS  Google Scholar 

  • Stumpf, P. K., and D. E. Green: l-amino acid oxidase of Proteus vulgaris. J. of Biol. Chem. 153, 387–399 (1944).

    CAS  Google Scholar 

  • On the mode of action of chlorinating compounds. Federat. Proc. 5, 157–158 (1946).

    Google Scholar 

  • Suda, M., and T. Takeda: Metabolism of tyrosine. I. Application of successive adaptation of bacteria for the analysis of the enzymatic breakdown of tyrosine. J. of Biochem. (Tokyo) 37, 375–378 (1950).

    CAS  Google Scholar 

  • Metabolism of tyrosine. II. Homogentisicase. J. of Biochem. (Tokyo) 37, 381–384 (1950).

    Google Scholar 

  • Sumner, J. B.: The isolation and crystallization of the enzyme urease. J. of Biol. Chem. 69, 435–441 (1926).

    CAS  Google Scholar 

  • Synge, R. L. M.: Methods of isolating ω-amino acids: γ-aminobutyric acid from rye grass. Biochemic, J. 48, 429–435 (1951).

    CAS  Google Scholar 

  • Tabor, H., and O. Hayaishi: The enzymatic conversion of histidine to glutamic acid. J. of Biol. Chem. 194, 171–172 (1952).

    CAS  Google Scholar 

  • Tabor, H., A, H. Mehler, D, Hayaishi and J. White: Urocanic acid as an intermediate in the enzymatic conversion of histidine to glutamic and formic acids, J. of Biol. Chem. 196, 121–128 (1952).

    CAS  Google Scholar 

  • Takeuchi, M.: Über den Abbau des Histidins. J. of Biochem. (Tokyo) 34, 1–21 (1941).

    CAS  Google Scholar 

  • Tatum, E, L.: Amino acid metabolism in mutant strains of mirco-organisms, Federat, Proc, 8, 511–517 (1949).

    CAS  Google Scholar 

  • Tatum, E, L., and D. Bonner: Indole and serine in the biosynthesis and breakdown of tryptophane. Proc. Nat. Acad. Sci. U.S.A. 30, 30–37 (1944).

    CAS  Google Scholar 

  • Tatum, E, L., D, Bonner and G.W. Beadle: Anthranilic acid and the biosynthesis of indole and tryptophan by Neurospora. Arch. of Biochem. 3, 477–478 (1943).

    Google Scholar 

  • Teas, H, J.: The biochemistry and genetics of threonine-requiring mutants of Neurospora crassa. Thesis, Calif. Inst. of Tech. 1947. Via Horowitz 1950,

    Google Scholar 

  • The genetics of threonine-requiring mutants of Neurospora crassa. Genetics 33, 632 (1948).

    Google Scholar 

  • Teas, H. J., J. W. Cameron and A. C. Newton: Tryptophan, niacin, indoleacetic acid, and carbohydrates in developing sugary and starchy maize kernels. Agronomy J. 44, 434–438 (1952).

    CAS  Google Scholar 

  • Teas, H, J., N, H. Horowitz and M. Fling: Homoserine as a precursor of threonine and methionine in Neurospora. J. of Biol. Chem. 172, 651–658 (1948).

    CAS  Google Scholar 

  • Teas, H. J., and A. C. Newton: Tryptophan, niacin, and indoleacetic acid in several endosperm mutants and standard lines of maize. Plant Physiol. 26, 494–501 (1951).

    PubMed  CAS  Google Scholar 

  • Thayer, P, S., and N. H. Horowitz: The l-ammo acid oxidase of Neurospora. J. of Biol. Chem. 192, 755–767 (1951).

    CAS  Google Scholar 

  • Thimann, K. V.: On the plant growth hormone produced by Bhizopus suinus. J. of Biol. Chem. 109, 279 (1935).

    CAS  Google Scholar 

  • Hydrolysis of indoleacetonitrile in plants. Arch. of Biochem. a. Biophysics 44, 242–243 (1953).

    Google Scholar 

  • Thompson, J. F., J. K. Pollard and F. C. Steward: Investigations of nitrogen compounds and nitrogen metabolism in plants. III. γ-aminobutyric acid in plants, with special reference to the potato-tuber and a new procedure for isolating amino acids other than α-amino acid. Plant Physiol. 28, 401–414 (1953).

    PubMed  CAS  Google Scholar 

  • Thompson, J. F., and F. C. Steward: The analysis of the alcohol-insoluble nitrogen of plants by quantitative procedures based on paper chromatography. J. of Exper. Bot. 3, 170–187 (1952).

    CAS  Google Scholar 

  • Tolbert, N. E., C. O. Glagett and R. H. Burris: Products of the oxidation of glycolic acid and l-lactic acid by enzymes from tobacco leaves. J. of Biol. Chem. 181, 905–914 (1949).

    CAS  Google Scholar 

  • Tsui, C.: The role of zinc in auxin synthesis in the tomato plant. Amer, J. Bot, 35, 172–179 (1948).

    CAS  Google Scholar 

  • Udenfriend, S., and J. R. Cooper: The enzymatic conversion of phenylalanine to tyrosine. J. of Biol. Chem. 194, 503–511 (1952).

    CAS  Google Scholar 

  • Ullmann, A.: Über Tyramin (p-Oxyphenyläthylamin) als wirksamen Bestandteil der Droge Semina cardui Mariae (Steehdistelkörner). Biochem. Z. 128, 402–406 (1922).

    CAS  Google Scholar 

  • Umbarger, H. E., and E. A. Adelberg: The role of α-keto-β-ethylbutyric acid in the biosynthesis of isoleucine. J. of Biol. Chem. 192, 883–889 (1951).

    CAS  Google Scholar 

  • Umbarger, H. E., and B. Magasanik: Isoleucine and valine metabolism of Escherichia coli. II. The accumulation of keto-acids. J. of Biol. Chem. 189, 287–292 (1951).

    CAS  Google Scholar 

  • Umbreit, W. W., W. A. Wood and I. C. Gunsalus: The activity of pyridoxal phosphate in tryptophane formation by cell-free enzyme preparations. J. of Biol. Chem. 165, 731–732 (1946).

    CAS  Google Scholar 

  • Utzino, S., u. M. Imaizumi: Über die Bakterienasparaginase. Hoppe-Seylers Z. 253, 51–54 (1938).

    Google Scholar 

  • Vaidyanathan, C. S., and K. V. Giri: Studies in plant arginase. I. Arginase from field bean (Dolichos lablab). General properties and the effect of metallic ions. Enzymologia (Den Haag) 16, 167–168 (1953).

    CAS  Google Scholar 

  • Vickery, H. B., G. W. Pucher, R. Schoenheimer and D. Rittenberg: The metabolism of nitrogen in the leaves of the buckwheat plant. J. of Biol. Chem. 129, 791–792 (1939).

    CAS  Google Scholar 

  • Virtanen, A. I., A. Berg u. S. Kari: Formation of homoserine in germinating pea seeds. Acta chem. scand. (Copenh.) 7, 1423–1424 (1953).

    CAS  Google Scholar 

  • Virtanen, A. I., and J. Erkama: Enzymic deamination of aspartic acid. Nature (Lond.) 142, 954 (1938).

    CAS  Google Scholar 

  • Virtanen, A. I., and T. Laine: Specificity of the enzyme aspartase. Suomen Kemistil., Ser. B 9, 28 (1936).

    Google Scholar 

  • The decarboxylation of d-lysine and l-aspartic acid. Enzymologia (Den Haag) 3, 266 (1937).

    Google Scholar 

  • Root nodule bacteria of leguminous plants. XXII. Excretion products of root nodules. Mechanism of fixation. Biochemic. J. 33, 412–427 (1939).

    Google Scholar 

  • Über die Umaminierung in grünen Pflanzen. Biochem. Z. 308, 213–215 (1941).

    Google Scholar 

  • Virtanen, A. I., and P. Linko: The occurrence of free ornithine and its N-acetyl derivative in plants. Acta chem. scand. (Copenh.) 9, 531–532 (1955).

    CAS  Google Scholar 

  • Virtanen, A. I., u. J. Tarnanen: Die enzymatische Spaltung und Synthese der Asparaginsäure. Biochem. Z. 250, 193–211 (1932).

    CAS  Google Scholar 

  • Suomen Kemistil., Ser. B 5, 30 (1932).

    Google Scholar 

  • Vogel, H. J., and D. M. Bonner: On the glutamate-proline-ornithine interrelationship in Neurospora crassa. Proc. Nat. Acad. Sei. U.S.A. 40, 688–694 (1954).

    CAS  Google Scholar 

  • Vogel, H. J., and B. D. Davis: Glutamic γ-semialdehyde and Δ′-pyrroline-5-carboxylic acid intermediates in the biosynthesis of proline. J. Amer. Chem. Soc. 74, 109–112 (1952).

    CAS  Google Scholar 

  • Volcani, B. E., and E. E. Snell: The effects of canavanine, arginine and related compounds in the growth of bacteria. J. of Biol. Chem. 174, 893–902 (1948).

    CAS  Google Scholar 

  • Wachsman, J. T., and H. A. Barker: The accumulation of formamide during the fermentation of histidine by Chstridium tetanomorphum. J. of Bacter. 69, 83–88 (1955).

    CAS  Google Scholar 

  • Walker, A. C., and C. L. A. Schmidt: Studies on histidase. Arch. of Biochem. 5, 445–467 (1944).

    CAS  Google Scholar 

  • Walker, J. B.: Arginosuccinic acid from Chlorella. Proc. Nat. Acad. Sci. U.S.A. 38, 561–566 (1952).

    CAS  Google Scholar 

  • Watanabe, Y., and K. Shimura: Biosynthesis of threonine from homoserine. J. of Biochem. (Tokyo) 42, 181–192 (1955).

    CAS  Google Scholar 

  • Weber, R. P., and S. A. Gordon: Abstr. Meeting Amer. Inst. Biol. Sci. Physiol. Sect. Madison, Wise. 1953. Via S. A. Gordon 1954.

    Google Scholar 

  • Weintraub, R., J. W. Brown, J. C. Nickeeson and K. N. Taylor: Studies in the relatoon between molecular structure and physiological activity of plant growth-regulators. I. Abcission-inducing activity. Bot. Gaz. 113, 348–362 (1952).

    CAS  Google Scholar 

  • Weiss, U., B. D. Davis and E. S. Mingioli: Aromatic biosynthesis. X. Identification of an early precursor as 5-dehydroquinic acid. J. Amer. Chem. Soc. 75, 5572–5576 (1953).

    CAS  Google Scholar 

  • Went, F. W.., and K. V. Thimann: Phytohormones. New York: McMillan & Co. 1937.

    Google Scholar 

  • Werle, E.: Über das Vorkommen von Diaminooxydase und Histidin-Decarboxylase in Mikroorganismen. Biochem. Z. 309, 61–76 (1941).

    CAS  Google Scholar 

  • Werle, E., u. S. Brüninghaus: Zur Kenntnis der Cysteinsäure- und der Glutaminsäure-Decarboxylase. Biochem. Z. 321, 492–499 (1951).

    PubMed  CAS  Google Scholar 

  • Werle, E., u. A. Raub: Occurrence, formation and destruction of biogenous amines in plants with special reference to histamine. Biochem. Z. 318, 538–553 (1948).

    PubMed  CAS  Google Scholar 

  • Werle, E., u. F. Roewer: Über tierische und pflanzliche Monaminoxydasen. Biochem. Z. 322, 320–326 (1952).

    PubMed  CAS  Google Scholar 

  • Westall, R. G.: Isolation of γ-ammo-η-butyric acid from beetroot (Beta vulgaris). Nature (Lond.) 165, 717 (1950).

    CAS  Google Scholar 

  • White, E. P.: Alkaloids of the Leguminosae. VIII.-XIII. New Zealand J. Sci. Technol., Sect. B 25, 137–162 (1944).

    CAS  Google Scholar 

  • Wildman, S. G., and J. Bonner: Observations on the chemical nature and formation of auxin in the Avena coleoptile. Amer. J. Bot. 35, 740–746 (1948).

    CAS  Google Scholar 

  • Wildman, S. G., M. G. Ferri and J. Bonner: The enzymatic conversion of tryptophan to auxin by spinach leaves. Arch. of Biochem. 13, 131–144 (1947).

    CAS  Google Scholar 

  • Wildman, S. G., and R. M. Muir: Observations on the mechanism of auxin formation in plant tissues. Plant Physiol. 24, 84–92 (1949).

    PubMed  CAS  Google Scholar 

  • Wilson, D. G., K. W. King and R. H. Burris: Transamination reactions in plants. J. of Biol. Chem. 208, 863–874 (1954).

    CAS  Google Scholar 

  • Wiltshire, G. H.: Metabolism of tryptophan in plants. Rep. Rothamsted Exper. Stat. 76 (1952).

    Google Scholar 

  • Oxidation of tryptophan in pea-seedling tissue and extracts. Biochemic. J. 55, 408 (1953).

    Google Scholar 

  • Metabolism of tryptophane in plants. Rep. Rothamsted Exper. Stat. 79 (1953).

    Google Scholar 

  • Windsor, E.: α-aminoadipic acid as a constituent of a com protein. J. of Biol. Chem. 192, 595–606 (1951).

    CAS  Google Scholar 

  • α-aminoadipic acid as a precursor to lysine in Neurospora. J. of Biol. Chem. 192, 607–609 (1951).

    Google Scholar 

  • Wiss, O.: Die Bedeutung des Pyridoxal-5-phosphates für den Kynurenin- und 3-Oxy-kynurenin-Abbau. Z. Naturforsch. 7b, 133–136 (1952).

    CAS  Google Scholar 

  • Wood, J. G.: Nitrogen metabolism of higher plants. Annual Rev. Plant Physiol. 4, 1–22 (1953).

    Google Scholar 

  • Wood, W. A., and I. C. Gunsalus: Serine and threonine deaminases of Escherichia coli. Activators for a cell-free enzyme. J. of Biol. Chem. 181, 171–182 (1949).

    CAS  Google Scholar 

  • Woods, D. D.: Studies in the metabolism of the strict anaerobes (genus Clostridium). V. Further experiments on the coupled reactions between pans of amino-acids induced by Cl. sporogenes. Biochemic. J. 30, 1934 (1936).

    CAS  Google Scholar 

  • Woods, D. D., and C. E. Clifton: Studies in the metabolism of the strict anaerobes (genus Clostridium). VI. Hydrogen production and amino-acid utilization by Clostridium tetanomorphum. Biochemic. J. 31, 1774 (1937).

    CAS  Google Scholar 

  • Studies in the metabolism of the strict anaerobes (genus Clostridium). VII. The decomposition of pyruvate and l(+)glutamic acid by Clostridium tetanomorphum. Biochemic. J. 32, 345 (1938).

    Google Scholar 

  • Wright, J. E., and A. M. Srb: Inhibition of growth in marze embryos by canavanine and its reversal, Bot. Gaz. 112, 52 (1950).

    CAS  Google Scholar 

  • Yamada, m., and S. Ishida: J. Agricult. Chem. Soc. Jap. 2 (7), 1 (1926).

    Google Scholar 

  • Yamaki, T., and K. Nakamura: Formation of indoleacetic acid in maize embryo. Sci. Papers Coll. Gen. Educ. Univ. Tokyo 2, 81–98 (1952).

    CAS  Google Scholar 

  • Yanofsky, C.: Tryptophane desmolase of Neurospora. J. of Biol. Chem. 194, 279 (1952a).

    CAS  Google Scholar 

  • d-serine dehydrase of Neurospora. J. of Biol. Chem. 198, 343–352 (1952b).

    Google Scholar 

  • Yanofsky, C., and J. L. Reissig: l-serine dehydrase of Neurospora. J. of Biol. Chem. 202, 567–577 (1953).

    CAS  Google Scholar 

  • Zacharius, R. M.: Thesis, University of Rochester, N. Y. 1952, quoted via F. C. Steward and Thompson 1954.

    Google Scholar 

  • Zacharius, R. M., J. K. Pollard and F. C. Stewabd: γ-methyleneglutamine and γ-methyleneglutamic acid in the tulip (Tulipa gesneriana). J. Amer. Chem. Soc. 76, 1961–1962 (1954).

    CAS  Google Scholar 

  • Zeller, E. A.: Diamin-oxydase. Adv. Enzymol. 2, 93–112 (1942).

    CAS  Google Scholar 

  • Zittle, C. A.: Hydrolysis of acid amides and amino acid amides. In: The Enzymes, edit. J. B. Sumner and K. Myrbäck, Vol. 1, Pt. 2, pp. 922–945. New York 1951.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1958 Springer-Verlag oHG. Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Street, H.E. (1958). The degradation of amino-acids. In: Allen, E.K., et al. Der Stickstoffumsatz / Nitrogen Metabolism. Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-94733-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-94733-9_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-94734-6

  • Online ISBN: 978-3-642-94733-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics