Skip to main content

Calcium-pH Interactions in the Production of Shape Change in Erythrocytes

  • Conference paper
Red Cell Shape

Abstract

Isovolumic change of erythrocyte shape from a disc to a sphere may occur as the result of exposure to a variety of chemical agents [6, 11, 13, 21, 30], changes in pH [21, 22, 24, 30, 31] or by virtue of ATP depletion [10, 19, 33, 34]. Up to a point, these shape changes are reversible upon removal of the agent, restoration of the pH or regeneration of intracellular ATP.

This work was supported in part by USPHS Grant No. HE-06241, USPHS Special Fellowship No. AM-50558 (Dr Weed) and INSERM, and CNRS. This work was presented in part at the 2nd International Symposium on Metabolism and Membrane Permeability of Erythrocytes, Thrombocytes and Leukocytes, Vienna, June, 1972.

Fellow of the Ligue nationale française contre le Cancer. Requests for reprints should be addressed to Dr Weed at Dept. of Medicine, Univ. of Rochester, School of Medicine Rochester, N. Y. 14642.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bessis (M.) (1970): Les erythrocytes crénelés. Nouv. Rev. fr. Hémat., 10, 1.

    Google Scholar 

  2. Bessis (M.) and Bricka (M.) (1950): Etude au microscope électronique sur l’hémolyse, l’agglutination, la forme et la structure des globules rouges. Rev. Hémat., 5, 396.

    PubMed  CAS  Google Scholar 

  3. Bessis (M.) and Prenant (M.) (1972): Topographie de l’apparition des spicules dans les erythrocytes crénelés (échinocytes). Nouv. Rev. fr. Hémat., 12, 351.

    CAS  Google Scholar 

  4. Bessis (M.) and Weed (R.) (1972): Preparation of red blood cells (RBC) for SEM: A survey of various artifacts. In: Scanning Electron Microscopy/1972, O. Johari and I. Gorvin (eds), IIT Research Institute, Chicago, Ill., p. 289.

    Google Scholar 

  5. Cha (Y. N.), Shin (B. C.) and Lee (K. S.) (1971): Active uptake of Ca++ and Ca++-activated Mg++ ATPase in red cell membrane fragments. J. Gen. Physiol., 57, 202.

    Article  PubMed  CAS  Google Scholar 

  6. Deuticke (B.) (1968): Transformation and restoration of biconcave shape of human erythrocytes induced by amphiphilic agents and changes of ionic environment. Biochim. Biophys. Acta, 163, 494.

    Article  PubMed  CAS  Google Scholar 

  7. Forstner (J.) and Manery (J. F.) (1971): Calcium binding by human erythrocyte membranes. Biochem. J., 124, 563.

    PubMed  CAS  Google Scholar 

  8. Furchgott (R. F.) and Ponder (E.) (1940): Disk-sphere transformation in mammalian red cell. II. The nature of the antisphering factor. J. Exper. Biol., 17, 117.

    CAS  Google Scholar 

  9. Halpern (B. N.) and Bessis (M.) (1950): Action antisphérocytaire de certains corps synthétiques: dérivés de la phénothiazine. C. R. Soc. Biol., 144, 759.

    CAS  Google Scholar 

  10. Haradin (A. R.), Weed (R. I.) and Reed (C. F.) (1969): Changes in physical properties of stored erythrocytes. Transfusion, 9, 229.

    Article  PubMed  CAS  Google Scholar 

  11. Hoffman (J. F.) (1952): The action of uranyl salts on the erythrocyte surface. Biol. Bull., 103, 303.

    Google Scholar 

  12. Hoffman (J. F.), Collier (R. H.) and Deitch (M. J.) (1955): Semi-quantitation of the rate of shape transformations (of constant volume) of human erythrocytes. J. Cell. Comp. Physiol., 46, 355.

    Google Scholar 

  13. Jolly (J.) (1923): Traité technique d’hématologie, vol. I. Maloine et fils, Paris, p. 64.

    Google Scholar 

  14. Kwant (W. O.) and Seeman (P.) (1969): The displacement of membrane calcium by a local anesthetic (chlorpromazine). Biochim. Biophys. Acta, 193, 338.

    Article  PubMed  CAS  Google Scholar 

  15. Lee (K. S.) and Shin (B. C.) (1969): Studies on the active transport of calcium in human red cells. J. Gen. Physiol., 54, 713.

    Article  PubMed  CAS  Google Scholar 

  16. Long (C.) and Mouat (B.) (1971): The binding of calcium ions by erythrocytes and « ghost »-cell membranes. Biochem. J., 123, 839.

    Google Scholar 

  17. Olson (E. J.) and Cazort (R. J.) (1969): Active calcium and strontium transport in human erythrocytes ghosts. J. Gen. Physiol., 53, 311.

    Article  PubMed  CAS  Google Scholar 

  18. Marchesi (V. T.), Steers (E.), Tillack (T. W.) and Marchesi (S. L.) (1969): Some properties of spectrin. A fibrous protein isolated from red cell membranes. In:Red cell membrane, structure and function. G. A. Jamieson and T. S. Greenwalt (eds). Lippincott Co., Philadelphia, p. 117.

    Google Scholar 

  19. Nakao (M.), Nakao (T.) and Yamazoe (S.) (1960): Adenosine triphosphate and maintenance of shape of the human red cells. Nature (London), 187, 945.

    Article  CAS  Google Scholar 

  20. Passow (H.) (1969): Passive ion permeability of the erythrocyte membrane. In: Progress in Biophysics and Molecular Biology. Vol. 19, Part 2. J. A. V. Butler and D. Noble (eds), Pergamon Press, London, p. 423.

    Google Scholar 

  21. Ponder (E.) (1948): Hemolysis and Related Phenomena. New York, Grune and Stratton.

    Google Scholar 

  22. Ponder (E.) and Ponder (R.) (1962): Transformation disque-sphère des globules rouges humaines entre deux surfaces de verre. Nouv. Rev. fr. Hémat., 2, 223.

    CAS  Google Scholar 

  23. Porzig (H.) (1972): ATP-independent calcium net movements in human red cell ghosts. J. Memb. Biol, 8, 237.

    Article  CAS  Google Scholar 

  24. Hand (R. P.), Burton (A. C.) and Canham (P.) (1965): Reversible changes in shape of red cells in electrical fields. Nature, 205, 977.

    Article  Google Scholar 

  25. Rosenthal (A. S.), Kregenow (F. M.) and Moses (H. L.) (1970): Some characteristics of a calcium2+-dependent ATPase activity associated with a group of erythrocyte membrane proteins which form fibrils. Biochim. Biophys. Acta, 196, 254.

    Article  PubMed  CAS  Google Scholar 

  26. Romero (P. J.) and (1971): The control by internal calcium of membrane permeability to sodium and potassium. J. Physiol, 214, 481.

    PubMed  CAS  Google Scholar 

  27. Schatzmann (H. J.) (1969): Transmembrane calcium movements in resealed human red cells. In: Biological Council Symposium on Drug Action. A. W. Guthbert (ed). Macmillan, London, p. 85.

    Google Scholar 

  28. Schatzmann (H. J.) and Vincenzi (F. F.) (1969): Calcium movements across the membrane of human red cells. J. Physiol., 201, 369.

    PubMed  CAS  Google Scholar 

  29. Schatzmann (H. J.) and Rossi (G. L.) (1971): (Ga2+ and Mg2+) activated membrane ATPases in human red cells and their possible relations to cation transport. Biochim. Biophys. Acta, 241, 379.

    Article  PubMed  CAS  Google Scholar 

  30. Teitel-Bernard (A.) (1932): Sur quelques propriétés physico-chimiques des hématies humaines. L’hématie mûriforme. Arch. roumaines Pathol. exp., 5, 989.

    Google Scholar 

  31. Trotter (W. D.) (1956): The slide-coverslip disk-sphere transformation in mammalian erythrocytes. Brit. J. Haemat., 2, 65.

    Article  PubMed  CAS  Google Scholar 

  32. Weed (R. I.) and Ghailley (B.) (1972): The disc echinocyte shape change of erythrocytes induced by external agents. Role of calcium. Proceedings of the 2nd International Symposium on Metabolism and Membrane Permeability of Erythrocytes, Thrombocytes and Leukocytes. Vienna.

    Google Scholar 

  33. Weed (R. I.), La Celle (P. L.) and Merrill (E. W.) (1969): Metabolic dependence of red cell deformability. J. Clin. Invest., 48, 795.

    Article  PubMed  CAS  Google Scholar 

  34. Weed (R. I.) and La Celle (P. L.) (1969): ATP dependence of erythrocyte membrane deformability. In: Jamieson (G. A.) and Greenwalt (T. J.) (eds). Red. Cell Membrane Structure and Function. Philadelphia, J. B. Lippincott Co., p. 318.

    Google Scholar 

  35. Wolf (H. U.) (1972): Studies on a Ca2+-dependent ATPase of human erythrocyte membrane. Effects of Ca2+ and H+. Biochim. Biophys. Acta, 266, 361.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Masson & Cie, Editeurs, Paris

About this paper

Cite this paper

Weed, R.I., Chailley, B. (1973). Calcium-pH Interactions in the Production of Shape Change in Erythrocytes. In: Bessis, M., Weed, R.I., Leblond, P.F. (eds) Red Cell Shape. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-88062-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-88062-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-88064-3

  • Online ISBN: 978-3-642-88062-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics