Skip to main content

Rendering Participating Media: Problems and Solutions from Application Areas

  • Conference paper
Photorealistic Rendering Techniques

Part of the book series: Focus on Computer Graphics ((FOCUS COMPUTER))

Abstract

Physically accurate rendering of radiatively participating media is an extremely demanding computational task. In this paper, current and potential applications requiring such renderings are reviewed. Some ideas for a practical rendering system, based on insights from application areas, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H.R. Baum, K.B. McGrattan, and R.G. Rehm. Simulation of smoke plumes from large pool fires. In The Proceedings of the Twenty-fifth International Symposium on Combustion. The Combustion Institute, 1994.

    Google Scholar 

  2. R.W. Bergstrom, C. Seigneur, B.L. Babson, H.-Y. Holmer, and M.A. Wojcik. Comparison of the observed and predicted visual effects caused by power plant plumes. Atmospheric Environment, 15 (10/11): 2135–2150, 1981.

    Google Scholar 

  3. P. Blasi, B. Lesaec, and C. Schlick. A rendering algorithm for discrete volume density objects. In Proceedings of Eurographics 1993, 1993.

    Google Scholar 

  4. J.F. Blinn. Light reflection functions for simulation of clouds and dusty surfaces. In Proceedings of Siggraph 1982, pages 21–29. ACM SIGGRAPH, 1982.

    Google Scholar 

  5. C. F. Bohren and D. R. Huffman. Absorption and Scattering of Light by Small Particles. Wiley, 1983.

    Google Scholar 

  6. C.C. Borel and S.A.W. Gerstl. Atmospheric corrections of land imagery using the extended radiosity method. In Proceedings of the International Geoscience and Remote Sensing Symposium ’92. IEEE and URSI, 1992.

    Google Scholar 

  7. C.C. Borel and S.A.W. Gerstl. Remote sensing applications of the extended radiosity method. In Proceedings of the International Geoscience and Remote Sensing Symposium ’92. IEEE and URSI, 1992.

    Google Scholar 

  8. F. Bresciani and G. Rossi. A computational method to simulate light propagation in fog: Theory experimental verification and applicability to road lighting systems analysis. In Lux Europa 1993 Proceedings, Vol II, 1993.

    Google Scholar 

  9. D. Bruce. A realistic model for battlefield fire plume simulation. In Characterization, Propagation and Simulation of Sources and Backgrounds, pages 231–236. SPIE, 1991.

    Google Scholar 

  10. J.M. Cathcart and A.D. Sheffer. Generation and application of high resolution infrared computer imagery. Optical Engineering, 30 (11): 1745–1755, November 1991.

    Article  Google Scholar 

  11. B.A. Chance. Synthetic imagery to simulate camouflage effectiveness. In Proceedings of the IEEE 1989 National Aerospace and Electronics Conference: NAECON 1989, pages 2098–2102. IEEE, 1989.

    Google Scholar 

  12. S. Chandrasekhar. Radiative Transfer. Dover, 1960.

    Google Scholar 

  13. S.-E. Chen, H. Rushmeier, G. Miller, and D. Turner. A progressive multi-pass method for global illumination. In Proceedings of Siggraph 1991, pages 165–174. ACM SIGGRAPH, 1991.

    Google Scholar 

  14. M.Y. Choi, A. Hamins, H. Rushmeier, and T. Kashiwagi. Simultaneous optical measurement of soot volume fraction, temperature and CO2 in heptane pool fire. In The Proceedings of the Twenty-fifth International Symposium on Combustion. The Combustion Institute, 1994.

    Google Scholar 

  15. CIE. Standardization of luminance distribution on clear skies. CIE Publication No. 22, 1973.

    Google Scholar 

  16. B. Collins. Visibility of exit signs in clear and smoky conditions. Journal of the Illumination Engineering Society, pages 69–83, Winter 1992.

    Google Scholar 

  17. R.D. Peacock et al. CFAST: the consolidated model of fire growth and smoke transport. NIST Technical Note 1299, 1993.

    Google Scholar 

  18. D.D. Evans, W.D. Walton, H.R. Baum, K.A. Notarianni, J.R. Lawson, H.C. Tang, K.R. Keydel, R.G. Rehm, D. Madrzykowski an R.H. Zile, H. Koseki, and E.J. Tennyson. Insitu burning of oil spills: Mesoscale experiments. In The Proceedings of the Fifteenth Arctic and Marine Oil Spill Program, pages 593–657. contributed by the National Institute of Standards and Technology, 1992.

    Google Scholar 

  19. G.Y. Gardner. Visual simulation of clouds. In Proceedings of Siggraph 1985, pages 297–303. ACM SIGGRAPH, 1985.

    Google Scholar 

  20. W.L. Grosshandler. RADCAL: A narrow-band model for radiation calculations in a combustion environment. NIST Technical Note 1402, 1993.

    Google Scholar 

  21. S. Haas and G. Sakas. Methods for efficient sampling of arbitrary distributed volume densities. In Proceedings of the Eurographics Workshop on Photo simulation, Realism and Physics in Computer Graphics, pages 215–227. INRIA-IRISA, 1990.

    Google Scholar 

  22. D.W. Hoock. Modeling time-dependent obscuration for simulated imaging of dust and smoke clouds. In Characterization, Propagation and Simulation of Sources and Backgrounds, pages 164–175. SPIE, 1991.

    Google Scholar 

  23. J. Howell. Thermal radiation in participating media: The past, the present and some possible futures. The Journal of Heat Transfer, 110: 1220–1229, November 1988.

    Article  Google Scholar 

  24. J.T. Kajiya. The rendering equation. In Proceedings of Siggraph 1986, pages 143–150. ACM SIGGRAPH, 1986.

    Google Scholar 

  25. J.T. Kajiya and B.P. Von Herzen. Ray tracing volume densities. In Proceedings of Siggraph 1984, pages 165–174. ACM SIGGRAPH, 1984.

    Google Scholar 

  26. John Kaufman, editor. IES Lighting Handbook, 1984 Reference Volume. IESNA, NYC, 1984.

    Google Scholar 

  27. F.X. Kneizys, E.P. Shettle, G.P. Anderson, L.W. Abreu, J.H. Chetwynd, J.E.A. Selby, S.A. Cloug, and W.O. Gallery. LOWTRAN 7 COMPUTER CODE: USER’S MANUAL AFGL-TR-88–0177. Air Force Geophysics Laboratory, Hans- com AFB, MA, 1988.

    Google Scholar 

  28. W. Kreiss, W. Lanich, and E. Niple. Electrooptical aerial targeting workstation. In Proceedings of the IEEE 1989 National Aerospace and Electronics Conference: NAECON 1989, pages 902–908. IEEE, 1989.

    Google Scholar 

  29. US Army Atmospheric Sciences Laboratory. Electro-optical system atmosphere effects library 1987. technical report, 1987.

    Google Scholar 

  30. E. Languénou, K. Bouatouch, and M. Chelle. Global illumination in presence of participating media with general properties. In Proceedings of the 5th Eurographics Workshop on Rendering, 1994.

    Google Scholar 

  31. N. Max. Efficient light propagation for multiple anisotropic volume scattering. In Proceedings of 5th Eurographics Workshop on Rendering, 1994.

    Google Scholar 

  32. M.P. Mengu? and P. Dutta. Scattering tomography and its application to diffusion flames. Journal of Heat Transfer, pages 144–151, February 1994.

    Google Scholar 

  33. G.W. Mulholland and N.P. Bryner. Radiometric model of the transmission cell- reciprocal nephelometer. Atmospheric Environment, 28 (5): 873–887, 1994.

    Article  Google Scholar 

  34. E. Nakamae, K. Kaneda, T. Okamoto, and T. Nishita. A lighting model aiming at drive simulators. In Proceedings of Siggraph 1990, pages 395–404. ACM SIGGRAPH, 1990.

    Google Scholar 

  35. T. Nishita, Y. Miyawaki, and E. Nakamae. A shading model for atmospheric scat-tering considering luminous intensity distribution of light sources. In Proceedings of Siggraph 1987, pages 303–308. ACM SIGGRAPH, 1987.

    Google Scholar 

  36. T. Nishita, T. Sirai, K. Tadamura, and E. Nakamae. Display of the earth taking into account atmospheric scattering. In Proceedings of Siggraph 1993, pages 175–182. ACM SIGGRAPH, 1993.

    Google Scholar 

  37. B. Roysam, A.R. Cohen, P.H. Getto, and P.R. Boyce. A numerical approach to the computation of light propagation through turbid media: Application to the evaluation of lighted exit signs. IEEE Transactions on Industry Applications, pages 661–669, May/June 1993.

    Google Scholar 

  38. C. Rozé, B. Maheu, and G. Grehan. Evaluations of the sighting distance in a foggy atmosphere by monte carlo simulation. Atmospheric Environment, 28 (5): 769–775, 1994.

    Article  Google Scholar 

  39. H. Rushmeier. Realistic Image Synthesis for Scenes with Radiatively Participating Media. PhD thesis, The Sibley School of Mechanical and Aerospace Engineering, Cornell University, 1988.

    Google Scholar 

  40. H. Rushmeier, A. Hamins, and M.Y. Choi. Case study: Volume rendering of pool fires. In The Proceedings of Visualization ’94. IEEE, 1994.

    Google Scholar 

  41. H. Rushmeier, C. Patterson, and A. Veerasamy. Geometric simplification for in-direct illumination calculations. In Proceedings of Graphics Interface 1993, pages 227–236. Canadian Human - Computer Communications Society (CHCCS), May 1993.

    Google Scholar 

  42. H. Rushmeier and K.E. Torrance. The zonal method for calculating light intensities in the presence of a participating medium. In Proceedings of Siggraph 1987, pages 293–302. ACM SIGGRAPH, 1987.

    Google Scholar 

  43. G. Sakas. Modeling and animating turbulent gaseous phenomena using spectral synthesis. The Visual Computer, 9: 200–212, 1993.

    Article  Google Scholar 

  44. P. Shirley. A ray tracing method for illumination calculation in diffuse-specular scenes. In Proceedings of Graphics Interface 1990, pages 205–212. Canadian Human - Computer Communications Society (CHCCS), May 1990.

    Google Scholar 

  45. P. Shirley and C. Wang. Monte carlo techniques for the direct lighting calculation, submitted for publication.

    Google Scholar 

  46. R. Siegel and J. Howell. Thermal Radiation Heat Transfer. Hemisphere Publishing Corporation, 1981.

    Google Scholar 

  47. J. Stam and E. Fiume. Turbulent wind fields for gaseous phenomena. In Procee-dings of Siggraph 1993, pages 369–376. ACM SIGGRAPH, 1993.

    Google Scholar 

  48. H. Tennekes and J.L. Lumley. A First Course in Turbulence. The MIT Press, Cambridge, MA, 1972.

    Google Scholar 

  49. G.J. Ward. The RADIANCE lighting simulation and rendering system. In Pro-ceedings of Siggraph 1994. ACM SIGGRAPH, 1994.

    Google Scholar 

  50. W.H. White, D.J. Moore, and J.P. Lodge, editors. Proceedings of the Symposium on Plumes and Visibility: Measurement and Model Components, 1980. in a special issue of Atmospheric Environment, vol. 15, 1981.

    Google Scholar 

  51. L. Yeager, C. Upson, and R. Myers. Combining physical and visual simulation - creation of the planet jupiter for the film “2010”. In Proceedings of Siggraph 1986, pages 85–93. ACM SIGGRAPH, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 EUROGRAPHICS The European Association for Computer Graphics

About this paper

Cite this paper

Rushmeier, H. (1995). Rendering Participating Media: Problems and Solutions from Application Areas. In: Sakas, G., Müller, S., Shirley, P. (eds) Photorealistic Rendering Techniques. Focus on Computer Graphics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87825-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87825-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87827-5

  • Online ISBN: 978-3-642-87825-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics